Document Type : Review Paper


1 Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.

2 Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.



Pathogenic microorganisms, such as Escherichia coli, Salmonella, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, Klebsiella pneumoniae, legionella, Shigella and etc. can contaminate drinking water and lead to disease and even death. On the other hand, due to the ability of antibiotics to prevent or treat bacterial infections, they have been used as the main method of infection treatment in humans and animals for the past two decades. The irresponsible use of these antibiotics is one of the most important reasons for the emergence of microbial resistance, which has become a global issue. Therefore, timely diagnosis of these pathogens is very important. the use of specialized personnel, machines, and tools in molecular methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are expensive, and traditional methods such as plate culture are time-consuming. Today, a variety of biosensors are reported to identify these bacteria, which are fast, accurate, and cost-effective. In this review, we described a number of important pathogenic bacteria and biosensors made to identify these pathogens.


Alamer, S. et al. (2018) 'Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria', Talanta, 185, pp. 275-280. doi:
Ameer, S. et al. (2023) 'Electrochemical impedance spectroscopy-based sensing of biofilms: A comprehensive review', Biosensors, 13 (8), pp. 777. doi:
Amiri, M. et al. (2018) 'Electrochemical methodologies for the detection of pathogens', ACS Sensors, 3 (6), pp. 1069-1086. doi:
Amri, C., Shukla, A.K. and Lee, J.-H. (2021) 'Recent advancements in nanoparticle-based optical biosensors for circulating cancer biomarkers', Materials, 14 (6), p. 1339. doi:
Anaissie, E.J., Penzak, S.R. and Dignani, M.C. (2002) 'The hospital water supply as a source of nosocomial infections: a plea for action', Archives of Internal Medicine, 162 (13), pp. 1483-1492. doi:
Arduini, F. et al. (2019) 'Origami multiple paper-based electrochemical biosensors for pesticide detection', Biosensors and Bioelectronics, 126, pp. 346-354. doi:
Arreguin-Campos, R. et al. (2023) 'Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products', Food Chemistry, 404, p. 134653. doi: Becerro, S., Paredes, J. and Arana, S. (2015) 'Multiparametric biosensor for detection and monitoring of bacterial biofilm adhesion and growth' In 6th European Conference of the International Federation for Medical and Biological Engineering, MBEC, 2014. 7-11 September 2014, Dubrovnik, Croatia: Springer, pp. 333-336.
Bengtsson, R.J. et al. (2022) 'Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs', Nature Microbiology, 7 (2), pp. 251-261. doi:
Berrettoni, M. et al. (2004) 'Electrochemical sensor for indirect detection of bacterial population', Sensors and Actuators B: Chemical, 102 (2), p. 331-335. doi:
Bharti, A. et al. (2020) 'Electrochemical biosensor for miRNA-21 based on gold-platinum bimetallic nanoparticles coated 3-aminopropyltriethoxy silane', Analytical Biochemistry, 609, p. 113908. doi:
Bruchmann, J. et al. (2015) 'Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity', PloS one, 10 (2), p. e0117300. doi:
Chen, M. et al. (2022) 'Upconversion fluorescence nanoprobe-based FRET for the sensitive determination of Shigella', Biosensors, 12 (10), p. 795. doi:
Choi, H.K. et al. (2021) 'Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses'. Frontiers in Chemistry, 9, p. 672739. doi:
Cuttelod, A., Seddon, M. and Neubert, E. (2011) 'European red list of non-marine molluscs', Publications Office of the European Union Luxembourg. doi:
Davydova, A. et al. (2016) 'Aptamers against pathogenic microorganisms', Critical Reviews in Microbiology, 42 (6), pp. 847-865. doi:
Desouza, I.A. et al. (2009) 'Role of sensory innervation in the rat pulmonary neutrophil recruitment induced by staphylococcal enterotoxins type A and B', European Journal of Pharmacology, 613 (1-3), pp. 128-134. doi:
Devi, N.R., Sasidharan, M., and Sundramoorthy, A.K. (2018) 'Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion', Journal of the Electrochemical Society, 165 (8), pp. B3046-B3053. doi:
Dill, K., Stanker, L.H., and Young, C.R. (1999) 'Detection of salmonella in poultry using a silicon chip-based biosensor', Journal of Biochemical and Biophysical Methods, 41 (1), pp. 61-67. doi:
Diouani, M.F. et al. (2017) 'Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis', Materials Science and Engineering: C, 74, p. 465-470. doi: Garibyan, L. et al. (2013) 'Polymerase chain reaction', The Journal of Investigative Dermatology, 133(3), pp. 1–4. doi:
Douaki, A. et al. (2020) 'Flexible screen printed aptasensor for rapid detection of furaneol: A comparison of CNTs and AgNPs effect on aptasensor performance', Nanomaterials, 10 (6), p. 1167. doi:
El Solh, A.A. et al. (2008) 'Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia', American Journal of Respiratory and Critical Care Medicine, 178 (5), pp. 513-519. doi:
Fang, L. et al. (2019) 'Copper nanoparticles/graphene modified green rusts for debromination of tetrabromobisphenol A: Enhanced galvanic effect, electron transfer and adsorption', Science of the Total Environment, 683, pp. 275-283. doi:
Fischer, M., Wahl, M. and Friedrichs, G. (2012) 'Design and field application of a UV-LED based optical fiber biofilm sensor', Biosensors and Bioelectronics, 33 (1), pp. 172-178. doi:
Funari, R., and Shen, A.Q. (2022) 'Detection and characterization of bacterial biofilms and biofilm-based sensors', ACS Sensors, 7 (2), pp. 347-357. doi:
Gao, R. et al. (2018) 'Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples'. Journal of Agricultural and Food Chemistry, 66 (41), pp. 10898-10905. doi:
Hargol Zadeh, S., Kashanian, S., and Nazari, M. (2023) 'A Label-free carbohydrate-based electrochemical sensor to detect escherichia coli pathogenic bacteria using D-mannose on a glassy carbon electrode', Biosensors, 13 (6), p. 619. doi:
He, Y. et al. (2023) 'Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021', Frontiers in Public Health, 11, p. 1127925. doi:
Izadi, Z. et al. (2016) 'Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula', Biosensors and Bioelectronics, 80, pp. 582-589. doi:
Jahanbakhshi, M., and Habibi, B. (2016) 'A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum', Biosensors and Bioelectronics, 81, pp. 143-150. doi:
Jia, G. et al. (2013) 'Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau', Frontiers in Microbiology, 4, p. 51234. doi:
Jiang, P. et al. (2012) 'Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo', Biomaterials, 33 (20), pp. 5130-5135. doi:
Kaur, K. et al. (2021) 'Quantitative E. coli enzyme detection in reporter hydrogel-coated paper using a smartphone camera', Biosensors, 11 (1), p. 25. doi:
Kidgell, C. et al. (2002) 'Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old', Infection, Genetics and Evolution, 2 (1), pp. 39-45. doi:
Lâm, T.-T. et al. (2010) 'Phagolysosomal integrity is generally maintained after Staphylococcus aureus invasion of nonprofessional phagocytes but is modulated by strain 6850', Infection and Immunity, 78 (8), pp. 3392-3403. doi:
Le, T.N., Tran, T.D., and Kim, M.I. (2020) 'A convenient colorimetric bacteria detection method utilizing chitosan-coated magnetic nanoparticles', Nanomaterials, 10 (1), p. 92. doi:
Lee, K.-M. et al. (2015) 'Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety', Food Control, 47, pp. 264-276. doi:
Li, C. et al. (2020) 'Biosensors based on advanced sulfur-containing nanomaterials', Sensors, 20 (12), p. 3488. doi:
Li, J. et al. (2023) 'A Simple colorimetric Au‐on‐Au tip sensor with a new functional nucleic acid probe for food‐borne pathogen Salmonella typhimurium', Angewandte Chemie, 135 (20), pp. e202300828. doi:
Li, L. et al. (2018) 'Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework', Microchimica Acta, 185, pp. 1-9. doi:
Lin, Y.-K. et al. (2022) 'A new biorecognition-element-free IDμE sensor for the identification and quantification of E. coli', Biosensors, 12 (8), p. 561. doi:
Liu, L. et al. (2018) 'Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip', Biosensors and Bioelectronics, 112, pp. 86-92. doi:
Liu, X. et al. (2022) 'Aptamer-Based fluorescence detection and selective disinfection of Salmonella Typhimurium by using hollow carbon nitride nanosphere', Biosensors, 12 (4), p. 228. doi:
Malhotra, S. et al. (2022) 'A low-cost, 3D-printed biosensor for rapid detection of Escherichia coli', Sensors, 22 (6), p. 2382. doi:
Massad-Ivanir, N., Shtenberg, G., and Segal, E. (2013) 'Optical detection of E. coli bacteria by mesoporous silicon biosensors', Journal of Visualized Experiments, (81), p. 50805. doi:
Mathai, E. et al. (1995) 'Significance of Salmonella typhi bacteriuria', Journal of Clinical Microbiology, 33 (7), pp. 1791-1792, doi:
Mukama, O. et al. (2017) 'An update on aptamer-based multiplex system approaches for the detection of common foodborne pathogens', Food Analytical Methods, 10, pp. 2549-2565. doi:
Mulvey, M.A. et al. (2000) 'Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses', Proceedings of the National Academy of Sciences, 97 (16), pp. 8829-8835. doi:
Muniandy, S. et al. (2019) 'A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica', Bioelectrochemistry, 127, pp. 136-144. doi:
Muramatsu, H. et al. (1989) 'Piezoelectric crystal biosensor system for detection of Escherichia coli', Analytical Letters, 22 (9), pp. 2155-2166. doi:
Ng, M.-Y., and Liu, W.-C. (2009) 'Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles', Optics Express, 17 (7), pp. 5867-5878. doi:
Nikonovas, T. et al. (2020) 'Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan', Communications Earth & Environment, 1 (1), p. 65. doi:
Pandey, A. et al. (2017) 'Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157: H7', Biosensors and Bioelectronics, 91, pp. 225-231. doi:
Pangajam, A., Theyagarajan, K., and Dinakaran, K. (2020) 'Highly sensitive electrochemical detection of E. coli O157: H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode', Sensing and Bio-Sensing Research, 29, p. 100317. doi:
Park, J.Y. et al. (2015) 'Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers', Journal of Nanomaterials, 2015 (1), p. 527126. doi:
Pebdeni, A.B., Hosseini, M., and Ganjali, M.R. (2020) 'Fluorescent turn-on aptasensor of Staphylococcus aureus based on the FRET between green carbon quantum dot and gold nanoparticle', Food Analytical Methods, 13 (11), pp. 2070-2079. doi:
Pedrero, M., Campuzano, S., and Pingarrón, J.M. (2012) 'Magnetic beads‐based electrochemical sensors applied to the detection and quantification of bioterrorism/biohazard agents', Electroanalysis, 24 (3), pp. 470-482. doi:
Pohanka, M. (2018) 'Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications', Materials, 11 (3), p. 448. doi:
Pourmadadi, M. et al. (2019) 'A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria', Microchimica Acta, 186, pp. 1-8. doi:
Quaresma, A.J.P.G. et al. (2022) 'Molecular epidemiology of sporadic and outbreak-related Salmonella Typhi isolates in the Brazilian north region: a retrospective analysis from 1995 to 2013', Infectious Disease Reports, 14 (4), pp. 569-573. doi:
Quintela, I.A. et al. (2019) 'Simultaneous colorimetric detection of a variety of Salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles', Frontiers in microbiology, 10, p. 1138. doi:
Rajapaksha, P. et al. (2019) 'A review of methods for the detection of pathogenic microorganisms', Analyst, 144 (2), pp. 396-411. doi:
Rakhimbekova, A. et al. (2022) 'Biofilm detection by a fiber-tip ball resonator optical fiber sensor', Biosensors, 12 (7), pp. 481. doi:
Rasooly, R. et al. (2019) 'T cell receptor Vβ9 in method for Rapidly quantifying active staphylococcal enterotoxin type-A without live animals', Toxins, 11 (7), p. 399. doi: Römling, U. (2023) 'Is biofilm formation intrinsic to the origin of life?', Environmental Microbiology, 25(1), pp. 26–39. doi:
Roushani, M., and Shahdost-Fard, F. (2015) 'Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode', Talanta, 144, pp. 510-516. doi:
Saccomano, S.C., Jewell, M.P., and Cash, K.J. (2021) 'A review of chemosensors and biosensors for monitoring biofilm dynamics', Sensors and Actuators Reports, 3, pp. 100043. doi:
Saxena, K. et al. (2022) 'Electrochemical immunosensor for detection of h. Pylori secretory protein vaca on g-c3n4/zno nanocomposite-modified au electrode', ACS Omega, 7 (36), pp. 32292-32301. doi:
Schnupf, P., and Sansonetti, P.J. (2019) 'Shigella pathogenesis: new insights through advanced methodologies', Bacteria and Intracellularity, pp. 15-39. doi:
Sheikhzadeh, E. et al. (2016) 'Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer', Biosensors and Bioelectronics, 80, pp. 194-200. doi:
Sieuwerts, S. et al. (2008) 'A simple and fast method for determining colony forming units', Letters in Applied Microbiology, 47 (4), pp. 275-278. doi:
Sobhan, A. et al. (2022) 'A novel activated biochar-based immunosensor for rapid detection of E. coli O157: H7'. Biosensors, 12 (10), p. 908. doi:
Song, M.-S. et al. (2017) 'Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform', Molecules, 22 (5), p. 825. doi:
Song, Y. et al. (2023) 'A novel nanoplatform based on biofunctionalized MNPs@ UCNPs for sensitive and rapid detection of Shigella'. Chemosensors, 11 (5), p. 309. doi:
Soy, S., Sharma, S.R., and Nigam, V.K. (2022) 'Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario', Journal of Materials Science: Materials in Electronics, 33 (8), pp. 5523-5533. doi:
Subramanian, S. et al. (2020) 'Microsystems for biofilm characterization and sensing–A review', Biofilm, 2, p. 100015. doi:
The, H.C. et al. (2016) 'The genomic signatures of Shigella evolution, adaptation and geographical spread', Nature Reviews Microbiology, 14 (4), pp. 235-250. doi:
Valones, M.A.A. et al. (2009) 'Principles and applications of polymerase chain reaction in medical diagnostic fields: a review', Brazilian Journal of Microbiology, 40, pp. 1-11. doi:
Wang, G. et al. (2015) 'A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine', Microchimica Acta, 182, pp. 315-322. doi:
Wei, S. et al. (2022) 'On-site colorimetric detection of Salmonella typhimurium', npj Science of Food, 6 (1), p. 48. doi:
Werwinski, S. et al. (2022) 'Monitoring aerobic marine bacterial biofilms on gold electrode surfaces and the influence of nitric oxide attachment control', Analytical Chemistry, 94 (36), pp. 12323-12332. doi:
Wu, W. et al. (2012) 'An aptamer-based biosensor for colorimetric detection of Escherichia coli O157: H7', PLOS one, 7 (11), p. e48999. doi:
Yadav, N., Chhillar, A.K., and Rana, J.S. (2020) 'Detection of pathogenic bacteria with special emphasis to biosensors integrated with AuNPs', Sensors International, 1, p. 100028. doi:
Yang, L., Li, Y., and Erf, G.F. (2004) 'Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia c oli O157: H7', Analytical Chemistry, 76 (4), pp. 1107-1113. doi:
Yuhana Ariffin, E. et al. (2020) 'A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of E. coli', Sensors, 20 (5), p. 1279. doi:
Zaraee, N. et al. (2020) 'Highly sensitive and label-free digital detection of whole cell E. coli with Interferometric Reflectance Imaging', Biosensors and Bioelectronics, 162, p. 112258. doi:
Zarei, S.S., Soleimanian-Zad, S., and Ensafi, A.A. (2018) 'An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode', Microchimica Acta, 185, pp. 1-9. doi:
Zhang, W. et al. (2018) 'Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples', Biosensors and Bioelectronics, 118, pp. 129-136. doi:
Zhang, X. et al. (2020) 'A label-free fluorescent aptasensor for detection of staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters', Polymers, 12 (1), p. 152. doi: Zhu, L. et al. (2016) 'Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food', Scientific Reports, 6 (1), p. 16092. doi: