Document Type : Review Paper

Authors

1 Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.

2 Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.

10.22126/arww.2024.9677.1311

Abstract

Pathogenic microorganisms, such as Escherichia coli, Salmonella, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, Klebsiella pneumoniae, legionella, Shigella and etc. can contaminate drinking water and lead to disease and even death. On the other hand, due to the ability of antibiotics to prevent or treat bacterial infections, they have been used as the main method of infection treatment in humans and animals for the past two decades. The irresponsible use of these antibiotics is one of the most important reasons for the emergence of microbial resistance, which has become a global issue. Therefore, timely diagnosis of these pathogens is very important. the use of specialized personnel, machines, and tools in molecular methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are expensive, and traditional methods such as plate culture are time-consuming. Today, a variety of biosensors are reported to identify these bacteria, which are fast, accurate, and cost-effective. In this review, we described a number of important pathogenic bacteria and biosensors made to identify these pathogens.

Keywords

Alamer, S. et al. (2018) 'Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria', Talanta, 185, pp. 275-280. doi: https://doi.org/10.1016/j.talanta.2018.03.072
Ameer, S. et al. (2023) 'Electrochemical impedance spectroscopy-based sensing of biofilms: A comprehensive review', Biosensors, 13 (8), pp. 777. doi: https://doi.org/10.3390/bios13080777
Amiri, M. et al. (2018) 'Electrochemical methodologies for the detection of pathogens', ACS Sensors, 3 (6), pp. 1069-1086. doi: https://doi.org/10.3390/bios13080777
Amri, C., Shukla, A.K. and Lee, J.-H. (2021) 'Recent advancements in nanoparticle-based optical biosensors for circulating cancer biomarkers', Materials, 14 (6), p. 1339. doi: https://doi.org/10.3390/ma14061339
Anaissie, E.J., Penzak, S.R. and Dignani, M.C. (2002) 'The hospital water supply as a source of nosocomial infections: a plea for action', Archives of Internal Medicine, 162 (13), pp. 1483-1492. doi: https://doi.org/10.1001/archinte.162.13.1483
Arduini, F. et al. (2019) 'Origami multiple paper-based electrochemical biosensors for pesticide detection', Biosensors and Bioelectronics, 126, pp. 346-354. doi: https://doi.org/10.1016/j.bios.2018.10.014
Arreguin-Campos, R. et al. (2023) 'Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products', Food Chemistry, 404, p. 134653. doi: https://doi.org/10.1016/j.foodchem.2022.134653 Becerro, S., Paredes, J. and Arana, S. (2015) 'Multiparametric biosensor for detection and monitoring of bacterial biofilm adhesion and growth' In 6th European Conference of the International Federation for Medical and Biological Engineering, MBEC, 2014. 7-11 September 2014, Dubrovnik, Croatia: Springer, pp. 333-336.
Bengtsson, R.J. et al. (2022) 'Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs', Nature Microbiology, 7 (2), pp. 251-261. doi: https://doi.org/10.1038/s41564-021-01054-z
Berrettoni, M. et al. (2004) 'Electrochemical sensor for indirect detection of bacterial population', Sensors and Actuators B: Chemical, 102 (2), p. 331-335. doi: https://doi.org/10.1016/j.snb.2004.04.022
Bharti, A. et al. (2020) 'Electrochemical biosensor for miRNA-21 based on gold-platinum bimetallic nanoparticles coated 3-aminopropyltriethoxy silane', Analytical Biochemistry, 609, p. 113908. doi: https://doi.org/10.1016/j.ab.2020.113908
Bruchmann, J. et al. (2015) 'Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity', PloS one, 10 (2), p. e0117300. doi: https://doi.org/10.1371/journal.pone.0117300
Chen, M. et al. (2022) 'Upconversion fluorescence nanoprobe-based FRET for the sensitive determination of Shigella', Biosensors, 12 (10), p. 795. doi: https://doi.org/10.3390/bios12100795
Choi, H.K. et al. (2021) 'Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses'. Frontiers in Chemistry, 9, p. 672739. doi: https://doi.org/10.3389/fchem.2021.672739
Cuttelod, A., Seddon, M. and Neubert, E. (2011) 'European red list of non-marine molluscs', Publications Office of the European Union Luxembourg. doi: https://doi.org/10.2779/84538
Davydova, A. et al. (2016) 'Aptamers against pathogenic microorganisms', Critical Reviews in Microbiology, 42 (6), pp. 847-865. doi: https://doi.org/10.3109/1040841X.2015.1070115
Desouza, I.A. et al. (2009) 'Role of sensory innervation in the rat pulmonary neutrophil recruitment induced by staphylococcal enterotoxins type A and B', European Journal of Pharmacology, 613 (1-3), pp. 128-134. doi: https://doi.org/10.1016/j.ejphar.2009.04.010
Devi, N.R., Sasidharan, M., and Sundramoorthy, A.K. (2018) 'Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion', Journal of the Electrochemical Society, 165 (8), pp. B3046-B3053. doi: https://doi.org/10.1149/2.0081808jes
Dill, K., Stanker, L.H., and Young, C.R. (1999) 'Detection of salmonella in poultry using a silicon chip-based biosensor', Journal of Biochemical and Biophysical Methods, 41 (1), pp. 61-67. doi: https://doi.org/10.1016/S0165-022X(99)00027-5
Diouani, M.F. et al. (2017) 'Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis', Materials Science and Engineering: C, 74, p. 465-470. doi: https://doi.org/10.1016/j.msec.2016.12.051 Garibyan, L. et al. (2013) 'Polymerase chain reaction', The Journal of Investigative Dermatology, 133(3), pp. 1–4. doi: https://doi.org/10.1038/jid.2013.1
Douaki, A. et al. (2020) 'Flexible screen printed aptasensor for rapid detection of furaneol: A comparison of CNTs and AgNPs effect on aptasensor performance', Nanomaterials, 10 (6), p. 1167. doi: https://doi.org/10.3390/nano10061167
El Solh, A.A. et al. (2008) 'Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia', American Journal of Respiratory and Critical Care Medicine, 178 (5), pp. 513-519. doi: https://doi.org/10.1164/rccm.200802-239OC
Fang, L. et al. (2019) 'Copper nanoparticles/graphene modified green rusts for debromination of tetrabromobisphenol A: Enhanced galvanic effect, electron transfer and adsorption', Science of the Total Environment, 683, pp. 275-283. doi: https://doi.org/10.1016/j.scitotenv.2019.05.273
Fischer, M., Wahl, M. and Friedrichs, G. (2012) 'Design and field application of a UV-LED based optical fiber biofilm sensor', Biosensors and Bioelectronics, 33 (1), pp. 172-178. doi: https://doi.org/10.1016/j.bios.2011.12.048
Funari, R., and Shen, A.Q. (2022) 'Detection and characterization of bacterial biofilms and biofilm-based sensors', ACS Sensors, 7 (2), pp. 347-357. doi: https://doi.org/10.1021/acssensors.1c02722
Gao, R. et al. (2018) 'Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples'. Journal of Agricultural and Food Chemistry, 66 (41), pp. 10898-10905. doi: https://doi.org/10.1021/acs.jafc.8b02164
Hargol Zadeh, S., Kashanian, S., and Nazari, M. (2023) 'A Label-free carbohydrate-based electrochemical sensor to detect escherichia coli pathogenic bacteria using D-mannose on a glassy carbon electrode', Biosensors, 13 (6), p. 619. doi: https://doi.org/10.3390/bios13060619
He, Y. et al. (2023) 'Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021', Frontiers in Public Health, 11, p. 1127925. doi: https://doi.org/10.3389/fpubh.2023.1127925
Izadi, Z. et al. (2016) 'Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula', Biosensors and Bioelectronics, 80, pp. 582-589. doi: https://doi.org/10.1016/j.bios.2016.02.032
Jahanbakhshi, M., and Habibi, B. (2016) 'A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum', Biosensors and Bioelectronics, 81, pp. 143-150. doi: https://doi.org/10.1016/j.bios.2016.02.064
Jia, G. et al. (2013) 'Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau', Frontiers in Microbiology, 4, p. 51234. doi: https://doi.org/10.3389/fmicb.2013.00199
Jiang, P. et al. (2012) 'Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo', Biomaterials, 33 (20), pp. 5130-5135. doi: https://doi.org/10.1016/j.biomaterials.2012.03.059
Kaur, K. et al. (2021) 'Quantitative E. coli enzyme detection in reporter hydrogel-coated paper using a smartphone camera', Biosensors, 11 (1), p. 25. doi: https://doi.org/10.3390/bios11010025
Kidgell, C. et al. (2002) 'Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old', Infection, Genetics and Evolution, 2 (1), pp. 39-45. doi: https://doi.org/10.1016/S1567-1348(02)00089-8
Lâm, T.-T. et al. (2010) 'Phagolysosomal integrity is generally maintained after Staphylococcus aureus invasion of nonprofessional phagocytes but is modulated by strain 6850', Infection and Immunity, 78 (8), pp. 3392-3403. doi: https://doi.org/10.1128/iai.00012-10
Le, T.N., Tran, T.D., and Kim, M.I. (2020) 'A convenient colorimetric bacteria detection method utilizing chitosan-coated magnetic nanoparticles', Nanomaterials, 10 (1), p. 92. doi: https://doi.org/10.3390/nano10010092
Lee, K.-M. et al. (2015) 'Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety', Food Control, 47, pp. 264-276. doi: https://doi.org/10.1016/j.foodcont.2014.07.011
Li, C. et al. (2020) 'Biosensors based on advanced sulfur-containing nanomaterials', Sensors, 20 (12), p. 3488. doi: https://doi.org/10.1016/j.foodcont.2014.07.011
Li, J. et al. (2023) 'A Simple colorimetric Au‐on‐Au tip sensor with a new functional nucleic acid probe for food‐borne pathogen Salmonella typhimurium', Angewandte Chemie, 135 (20), pp. e202300828. doi: https://doi.org/10.1002/ange.202300828
Li, L. et al. (2018) 'Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework', Microchimica Acta, 185, pp. 1-9. doi: https://doi.org/10.1007/s00604-018-2884-5
Lin, Y.-K. et al. (2022) 'A new biorecognition-element-free IDμE sensor for the identification and quantification of E. coli', Biosensors, 12 (8), p. 561. doi: https://doi.org/10.3390/bios12080561
Liu, L. et al. (2018) 'Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip', Biosensors and Bioelectronics, 112, pp. 86-92. doi: https://doi.org/10.1016/j.bios.2018.04.019
Liu, X. et al. (2022) 'Aptamer-Based fluorescence detection and selective disinfection of Salmonella Typhimurium by using hollow carbon nitride nanosphere', Biosensors, 12 (4), p. 228. doi: https://doi.org/10.3390/bios12040228
Malhotra, S. et al. (2022) 'A low-cost, 3D-printed biosensor for rapid detection of Escherichia coli', Sensors, 22 (6), p. 2382. doi: https://doi.org/10.3390/s22062382
Massad-Ivanir, N., Shtenberg, G., and Segal, E. (2013) 'Optical detection of E. coli bacteria by mesoporous silicon biosensors', Journal of Visualized Experiments, (81), p. 50805. doi: https://doi.org/10.3791/50805
Mathai, E. et al. (1995) 'Significance of Salmonella typhi bacteriuria', Journal of Clinical Microbiology, 33 (7), pp. 1791-1792, doi: https://doi.org/10.1128/jcm.33.7.1791-1792.1995
Mukama, O. et al. (2017) 'An update on aptamer-based multiplex system approaches for the detection of common foodborne pathogens', Food Analytical Methods, 10, pp. 2549-2565. doi: https://doi.org/10.1007/s12161-017-0814-5
Mulvey, M.A. et al. (2000) 'Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses', Proceedings of the National Academy of Sciences, 97 (16), pp. 8829-8835. doi: https://doi.org/10.1073/pnas.97.16.882
Muniandy, S. et al. (2019) 'A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica', Bioelectrochemistry, 127, pp. 136-144. doi: https://doi.org/10.1016/j.bioelechem.2019.02.005
Muramatsu, H. et al. (1989) 'Piezoelectric crystal biosensor system for detection of Escherichia coli', Analytical Letters, 22 (9), pp. 2155-2166. doi: https://doi.org/10.1080/00032718908051244
Ng, M.-Y., and Liu, W.-C. (2009) 'Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles', Optics Express, 17 (7), pp. 5867-5878. doi: https://doi.org/10.1364/OE.17.005867
Nikonovas, T. et al. (2020) 'Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan', Communications Earth & Environment, 1 (1), p. 65. doi: https://doi.org/10.1038/s43247-020-00069-4
Pandey, A. et al. (2017) 'Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157: H7', Biosensors and Bioelectronics, 91, pp. 225-231. doi: https://doi.org/10.1016/j.bios.2016.12.041
Pangajam, A., Theyagarajan, K., and Dinakaran, K. (2020) 'Highly sensitive electrochemical detection of E. coli O157: H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode', Sensing and Bio-Sensing Research, 29, p. 100317. doi: https://doi.org/10.1016/j.sbsr.2019.100317
Park, J.Y. et al. (2015) 'Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers', Journal of Nanomaterials, 2015 (1), p. 527126. doi: https://doi.org/10.1155/2015/527126
Pebdeni, A.B., Hosseini, M., and Ganjali, M.R. (2020) 'Fluorescent turn-on aptasensor of Staphylococcus aureus based on the FRET between green carbon quantum dot and gold nanoparticle', Food Analytical Methods, 13 (11), pp. 2070-2079. doi: https://doi.org/10.1007/s12161-020-01821-4
Pedrero, M., Campuzano, S., and Pingarrón, J.M. (2012) 'Magnetic beads‐based electrochemical sensors applied to the detection and quantification of bioterrorism/biohazard agents', Electroanalysis, 24 (3), pp. 470-482. doi: https://doi.org/10.1002/elan.201100528
Pohanka, M. (2018) 'Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications', Materials, 11 (3), p. 448. doi: https://doi.org/10.3390/ma11030448
Pourmadadi, M. et al. (2019) 'A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria', Microchimica Acta, 186, pp. 1-8. doi: https://doi.org/10.1007/s00604-019-3957-9
Quaresma, A.J.P.G. et al. (2022) 'Molecular epidemiology of sporadic and outbreak-related Salmonella Typhi isolates in the Brazilian north region: a retrospective analysis from 1995 to 2013', Infectious Disease Reports, 14 (4), pp. 569-573. doi: https://doi.org/10.3390/idr14040060
Quintela, I.A. et al. (2019) 'Simultaneous colorimetric detection of a variety of Salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles', Frontiers in microbiology, 10, p. 1138. doi: https://doi.org/10.3389/fmicb.2019.01138
Rajapaksha, P. et al. (2019) 'A review of methods for the detection of pathogenic microorganisms', Analyst, 144 (2), pp. 396-411. doi: https://doi.org/10.1039/C8AN01488D
Rakhimbekova, A. et al. (2022) 'Biofilm detection by a fiber-tip ball resonator optical fiber sensor', Biosensors, 12 (7), pp. 481. doi: https://doi.org/10.3390/bios12070481
Rasooly, R. et al. (2019) 'T cell receptor Vβ9 in method for Rapidly quantifying active staphylococcal enterotoxin type-A without live animals', Toxins, 11 (7), p. 399. doi: https://doi.org/10.3390/toxins11070399 Römling, U. (2023) 'Is biofilm formation intrinsic to the origin of life?', Environmental Microbiology, 25(1), pp. 26–39. doi: https://doi.org/10.1111/1462-2920.16179
Roushani, M., and Shahdost-Fard, F. (2015) 'Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode', Talanta, 144, pp. 510-516. doi: https://doi.org/10.1016/j.talanta.2015.06.052
Saccomano, S.C., Jewell, M.P., and Cash, K.J. (2021) 'A review of chemosensors and biosensors for monitoring biofilm dynamics', Sensors and Actuators Reports, 3, pp. 100043. doi: https://doi.org/10.1016/j.snr.2021.100043
Saxena, K. et al. (2022) 'Electrochemical immunosensor for detection of h. Pylori secretory protein vaca on g-c3n4/zno nanocomposite-modified au electrode', ACS Omega, 7 (36), pp. 32292-32301. doi: https://doi.org/10.1021/acsomega.2c03627
Schnupf, P., and Sansonetti, P.J. (2019) 'Shigella pathogenesis: new insights through advanced methodologies', Bacteria and Intracellularity, pp. 15-39. doi: https://doi.org/10.1128/9781683670261.ch2
Sheikhzadeh, E. et al. (2016) 'Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer', Biosensors and Bioelectronics, 80, pp. 194-200. doi: https://doi.org/10.1016/j.bios.2016.01.057
Sieuwerts, S. et al. (2008) 'A simple and fast method for determining colony forming units', Letters in Applied Microbiology, 47 (4), pp. 275-278. doi: https://doi.org/10.1111/j.1472-765X.2008.02417.x
Sobhan, A. et al. (2022) 'A novel activated biochar-based immunosensor for rapid detection of E. coli O157: H7'. Biosensors, 12 (10), p. 908. doi: https://doi.org/10.3390/bios12100908
Song, M.-S. et al. (2017) 'Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform', Molecules, 22 (5), p. 825. doi: https://doi.org/10.3390/molecules22050825
Song, Y. et al. (2023) 'A novel nanoplatform based on biofunctionalized MNPs@ UCNPs for sensitive and rapid detection of Shigella'. Chemosensors, 11 (5), p. 309. doi: https://doi.org/10.3390/chemosensors11050309
Soy, S., Sharma, S.R., and Nigam, V.K. (2022) 'Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario', Journal of Materials Science: Materials in Electronics, 33 (8), pp. 5523-5533. doi: https://doi.org/10.1007/s10854-022-07741-9
Subramanian, S. et al. (2020) 'Microsystems for biofilm characterization and sensing–A review', Biofilm, 2, p. 100015. doi: https://doi.org/10.1016/j.bioflm.2019.100015
The, H.C. et al. (2016) 'The genomic signatures of Shigella evolution, adaptation and geographical spread', Nature Reviews Microbiology, 14 (4), pp. 235-250. doi: https://doi.org/10.1038/nrmicro.2016.10
Valones, M.A.A. et al. (2009) 'Principles and applications of polymerase chain reaction in medical diagnostic fields: a review', Brazilian Journal of Microbiology, 40, pp. 1-11. doi: https://doi.org/10.1590/S1517-83822009000100001
Wang, G. et al. (2015) 'A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine', Microchimica Acta, 182, pp. 315-322. doi: https://doi.org/10.1007/s00604-014-1335-1
Wei, S. et al. (2022) 'On-site colorimetric detection of Salmonella typhimurium', npj Science of Food, 6 (1), p. 48. doi: https://doi.org/10.1038/s41538-022-00164-0
Werwinski, S. et al. (2022) 'Monitoring aerobic marine bacterial biofilms on gold electrode surfaces and the influence of nitric oxide attachment control', Analytical Chemistry, 94 (36), pp. 12323-12332. doi: https://doi.org/10.1021/acs.analchem.2c00934
Wu, W. et al. (2012) 'An aptamer-based biosensor for colorimetric detection of Escherichia coli O157: H7', PLOS one, 7 (11), p. e48999. doi: https://doi.org/10.1371/journal.pone.0048999
Yadav, N., Chhillar, A.K., and Rana, J.S. (2020) 'Detection of pathogenic bacteria with special emphasis to biosensors integrated with AuNPs', Sensors International, 1, p. 100028. doi: https://doi.org/10.1016/j.sintl.2020.100028
Yang, L., Li, Y., and Erf, G.F. (2004) 'Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia c oli O157: H7', Analytical Chemistry, 76 (4), pp. 1107-1113. doi: https://doi.org/10.1021/ac0352575
Yuhana Ariffin, E. et al. (2020) 'A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of E. coli', Sensors, 20 (5), p. 1279. doi: https://doi.org/10.3390/s20051279
Zaraee, N. et al. (2020) 'Highly sensitive and label-free digital detection of whole cell E. coli with Interferometric Reflectance Imaging', Biosensors and Bioelectronics, 162, p. 112258. doi: https://doi.org/10.1016/j.bios.2020.112258
Zarei, S.S., Soleimanian-Zad, S., and Ensafi, A.A. (2018) 'An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode', Microchimica Acta, 185, pp. 1-9. doi: https://doi.org/10.1007/s00604-018-3075-0
Zhang, W. et al. (2018) 'Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples', Biosensors and Bioelectronics, 118, pp. 129-136. doi: https://doi.org/10.1016/j.bios.2018.07.047
Zhang, X. et al. (2020) 'A label-free fluorescent aptasensor for detection of staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters', Polymers, 12 (1), p. 152. doi: https://doi.org/10.3390/polym12010152 Zhu, L. et al. (2016) 'Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food', Scientific Reports, 6 (1), p. 16092. doi: https://doi.org/10.1038/srep16092