Ahmadpour, N.
et al. (2024) ‘Design and optimization of TiO2-based photocatalysts for efficient removal of pharmaceutical pollutants in water: Recent developments and challenges’,
Journal of Water Process Engineering, 57, p. 104597. doi:
https://doi.org/10.1016/j.jwpe.2023.104597
Al-Ghamdi, A.A.
et al. (2025) ‘An easy and single-step biosynthesis of wo(3) with high photocatalytic degradation activity for dye degradation’,
Nanomaterials (Basel), 15, p. 1036. doi:
https://doi.org/10.3390/nano15131036
Anastas, P.T., and Warner, J.C. (2000) Green chemistry. New York: Oxford University Press.
Azeez, F.
et al. (2018) ‘The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles’,
Scientific Reports, 8, p. 7104. doi:
https://doi.org/10.1038/s41598-018-25673-5
Balu, S.
et al. (2024) ‘Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production - a review’,
RSC Advances, 14, pp. 14392-14424. doi:
https://doi.org/10.1039/d4ra01307g
Bhavani, P.
et al. (2022) ‘Recent advances in wide solar spectrum active w 18 o 49 -based hotocatalysts for energy and environmental applications’,
Catalysis Reviews, 65, pp. 1521-1566. doi:
https://doi.org/10.1080/01614940.2022.2038472
Bitaraf, M. and Amoozadeh, A. (2020) ‘The first report of covalently grafted semiconductors; n-TiO
2-P25@ECH@WO
3 as a new, efficient, robust and visible‐light‐responsive photocatalyst’,
Journal of Chemical Technology & Biotechnology, 96, pp. 963-970. doi:
https://doi.org/10.1002/jctb.6605
Boga, B.
et al. (2018) ‘Detailed spectroscopic and structural analysis of TiO
2/WO
3 composite semiconductors’,
Journal of Spectroscopy, 2018, pp. 1-7. doi:
https://doi.org/10.1155/2018/6260458
Bollinger, J.-C.
et al. (2025) ‘Molecular properties of methylene blue, a common probe in sorption and degradation studies: A review’,
Environmental Chemistry Letters, 23, pp. 1403-1424. doi:
https://doi.org/10.1007/s10311-025-01856-1
Brandl, F.
et al. (2020) ‘Consecutive photoinduced electron transfer (conpet): The mechanism of the photocatalyst rhodamine 6g’,
Chemistry, 26, pp. 7946-7954. doi:
https://doi.org/10.1002/chem.201905167
Cheng, K.
et al. (2024) ‘Mixed Metal Oxide W-TiO(2) Nanopowder for Environmental Process: Synergy of Adsorption and Photocatalysis‘,
Nanomaterials (Basel), 14, p. 765. doi:
https://doi.org/10.3390/nano14090765
Dolatyari, M.
et al. (2024) ‘Core/Shell ZnO/TiO
2, SiO
2/TiO
2, Al
2O
3/TiO
2, and Al
1.9Co
0.1O
3/TiO
2 Nanoparticles for the Photodecomposition of Brilliant Blue E-4BA,
Inorganics, 12, p. 281. doi:
https://doi.org/10.3390/inorganics12110281
Farghaly, A.
et al. (2024) ‘Synergistic photocatalytic degradation of methylene blue using TiO2 composites with activated carbon and reduced graphene oxide: a kinetic and mechanistic study’,
Applied Water Science, 14, p. 228. doi:
https://doi.org/10.1007/s13201-024-02286-0
Gao, L.
et al. (2017) ‘Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities’,
Scientific Reports, 7, p. 1102. doi:
https://doi.org/10.1038/s41598-017-01244-y
Ghiloufi, M.
et al. (2024) ‘Photocatalytic activity and electrochemical properties of a ternary-based-TiO2 nanocomposite’,
Inorganic and Nano-Metal Chemistry, 55, pp. 678-691. doi:
https://doi.org/10.1080/24701556.2024.2354485
González Rodríguez, L.M.
et al. (2020) ‘Synthesis, characterization and photocatalytic activity evaluation of WO3, TiO2 and WO3/TiO2 supported on zeolite faujasite’,
International Journal of Chemical Reactor Engineering, 18, p. 20200095. doi:
https://doi.org/10.1515/ijcre-2020-0095
Gonzalez, S. and Jaramillo-Fierro, X. (2025) ‘Density functional theory study of methylene blue demethylation as a key step in degradation mediated by reactive oxygen species’,
International Journal of Molecular Sciences, 26, p. 1756. doi:
https://doi.org/10.3390/ijms26041756
Hosseini, S., Amoozadeh, A. and Akbarzadeh, Y. (2019) ‘Nano-WO3-SO3H as a New Photocatalyst Insight Through Covalently Grafted Brønsted Acid: Highly Efficient Selective Oxidation of Benzyl Alcohols to Aldehydes’,
Photochemistry and Photobiology, 95, pp. 1320-30, doi:
https://doi.org/10.1111/php.13142
Hou, C. and Hao, J. (2021) ‘A three-dimensional nano-network WO3/F-TiO
2-{001} heterojunction constructed with OH-TiOF
2 as the precursor and its efficient degradation of methylene blue’,
RSC Advances, 11, pp. 26063-26072. doi:
https://doi.org/10.1039/d1ra04809k
Iqbal, A.
et al. (2021) ‘Charge Transport Phenomena in Heterojunction Photocatalysts: The WO
3/TiO
2 System as an Archetypical Model’,
ACS Applied Materials & Interfaces, 13, pp. 9781-9793. doi:
https://doi.org/10.1021/acsami.0c19692
Jiang, L.
et al. (2021) ‘Oxygen-Deficient WO3/TiO2/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue’,
Catalysts, 11, p. 1349. doi:
https://doi.org/10.3390/catal11111349
Kalaycioglu, Z.
et al. (2023) ‘Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide’,
ACS Omega, 8, pp. 13004-13015. doi:
https://doi.org/10.1021/acsomega.3c00198
Kulkarni, S.N.
et al. (2025) ‘Recent trends in tio2 focused s-scheme heterojunctions for photocatalytic innovations: A comprehensive analysis’,
Journal of Alloys and Compounds, 1016, pp., doi:
https://doi.org/10.1016/j.jallcom.2025.178876
Ernawatia. L.
et al. (2019) ‘Mesoporous WO
3/TiO
2 nanocomposites photocatalyst for rapid degradation of methylene blue in aqueous medium’,
International Journal of Engineering, 32, pp. 1345-1352. doi:
https://doi.org/10.5829/ije.2019.32.10a.02
Liu, Y.
et al. (2020) ‘An in situ assembled WO(
3)-TiO(
2) vertical heterojunction for enhanced Z-scheme photocatalytic activity’,
Nanoscale, 12, pp. 8775-84. doi:
https://doi.org/10.1039/d0nr01611j
Matinise, N.
et al. (2025) ‘Enhanced photocatalytic degradation of methylene blue using zinc vanadate nanomaterials with structural and electrochemical properties’,
Scientific Reports, 15, p. 26333. doi:
https://doi.org/10.1038/s41598-025-11418-8
Min, N.
et al. (2025) ‘Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO
2 photocatalysis and hydrolysis’,
Water Research, 273, p. 122956, doi:
https://doi.org/10.1016/j.watres.2024.122956
Moghni, N.
et al. (2022) ‘Enhanced photocatalytic activity of TiO2/WO3 nanocomposite from sonochemical-microwave assisted synthesis for the photodegradation of ciprofloxacin and oxytetracycline antibiotics under uv and sunlight’,
Journal of Photochemistry and Photobiology A: Chemistry, 428, pp. 113848. doi:
https://doi.org/10.1016/j.jphotochem.2022.113848
Nguyen, B.C.
et al. (2024) ‘Advanced cellulose-based hydrogel TiO
2 catalyst composites for efficient photocatalytic degradation of organic dye methylene blue’,
Scientific Reports, 14, p. 10935. doi:
https://doi.org/10.1038/s41598-024-61724-w
Nik Ramli Nik F.N.A.
et al. (2024) ‘Photodegradation of Methylene Blue over WO
3/TiO
2 Composites under Low UV-C Irradiation and Scavenger Analysis’,
Malaysian Journal of Chemistry, 26, pp. 358-69. doi:
https://doi.org/10.55373/mjchem.v26i5.358
Park, H.
et al. (2016) ‘Photoinduced charge transfer processes in solar photocatalysis based on modified TiO
2’,
Energy & Environmental Science, 9, pp. 411-33. doi:
https://doi.org/10.1039/c5ee02575c
Serpone, N., and Emeline, A.V. (2012) ‘Semiconductor photocatalysis - past, present, and future outlook’,
Journal of Physical Chemistry Letters, 3, pp. 673-6777. doi:
https://doi.org/10.1021/jz300071j
Serra-Pérez, E.
et al. (2024) ‘Influence of the surface structure of the TiO2 support on the properties of the Au/TiO2 photocatalyst for water treatment under visible light’,
Catalysis Today, 437, p. 114764. doi:
https://doi.org/10.1016/j.cattod.2024.114764
Sharifiyan, M.S., Fattah-alhosseini, A. and Karbasi, M. (2023) ‘Photocatalytic evaluation of hierarchical TiO2/WO3 hybrid coating created by peo/hydrothermal method’,
Applied Surface Science Advances, 18, p. 100541. doi:
https://doi.org/10.1016/j.apsadv.2023.100541
Shoaib, M.
, et al. (2023) ‘Dual s-scheme heterojunction cds/tio(2)/g-c(3)n(4) photocatalyst for hydrogen production and dye degradation applications’,
ACS Omega, 8, pp. 43139-50, doi:
https://doi.org/10.1021/acsomega.3c06759
Sotelo‐Vazquez, C.
et al. (2017) ‘Evidence and effect of photogenerated charge transfer for enhanced photocatalysis in WO3 / TiO2 heterojunction films: A computational and experimental study’,
Advanced Functional Materials, 27, pp. 1605413. doi:
https://doi.org/10.1002/adfm.201605413
Thambiliyagodage, C. (2021) ‘Activity enhanced TiO2 nanomaterials for photodegradation of dyes - a review’,
Environmental Nanotechnology, Monitoring & Management 16, p. 100592. doi:
https://doi.org/10.1016/j.enmm.2021.100592
Vasiljevic, Z.Z.
et al. (2020) ‘Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method’,
Royal Society Open Science, 7, p. 200708. doi:
https://doi.org/10.1098/rsos.200708
Yang, Y.
et al. (2025) ‘Hollow flower-like WO(
3)@TiO(
2) heterojunction microspheres for the photocatalytic degradation of rhodamine B and tetracycline’,
RSC Advances, 15, pp. 12629-12644. doi:
https://doi.org/10.1039/d5ra01412c
Yin, X., Liu, L. and Ai, F. (2021) ‘Enhanced Photocatalytic Degradation of Methylene Blue by WO3 Nanoparticles Under NIR Light irradiation’, Frontiers in Chemistry, 9, p. 683765. doi: https://doi.org/10.3389/fchem.2021.683765