Document Type : Research Paper

Authors

1 Department of Chemistry, Abdul Wali khan University, Mardan, Pakistan.

2 Faculty of Science, Autonomous University of Madrid, Spainish National Research Council (UAM-CSIC), Madrid, Spain.

3 Cantoblanco Campus, Consejo Superiorde Investigaciones Científicas, CSIC, Madrid, Spain.

4 UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, Pretoria, South Africa.

10.22126/arww.2024.10753.1336

Abstract

This study presents a method for enhancing the photocatalytic properties of strontium oxide (SrO) nanoparticles (NPs) through doping with Iron (Fe) and titanium (Ti) ions using hydrothermal synthesis. The materials were characterized using a range of spectroscopic and microscopic techniques to ensure accurate analysis of their structure and composition. Photocatalytic efficiencies of the as-synthesized materials were evaluated against the degradation of methyl orange dye, achieving about 98 % removal in 90 min with 3 % doped material. The degradation efficiency was found to be dependent on several factors including pH, initial dye concentration, and catalyst dosage. Optimal conditions were determined to be a pH of 4, an initial dye concentration of 20 mg/L, and a catalyst dosage of 150 mg. These findings suggest that the Fe/Ti-codoped SrO nanoparticles hold significant potential for applications in environmental cleanup processes, particularly in the degradation of organic pollutants. The study provides valuable insights into the synthesis and application of doped nanoparticles in photocatalysis, highlighting their efficiency and the importance of optimizing reaction conditions to maximize performance.

Keywords

Aghaee, M., and Manteghi, F. (2022) ‘Antibacterial activity of Ag2O/SrO/CaO nanocomposite’ Chemistry Proceedings12 (1), p. 77. doi: https://doi.org/10.3390/ecsoc-26-13577
Al-Abdallat, Y. et al. (2019) ‘Photocatalytic degradation dynamics of methyl orange using coprecipitation synthesized Fe3O4 nanoparticles’, Water, Air, & Soil Pollution230, pp. 1-16. doi: https://doi.org/10.1007/s11270-019-4310-y.
Al-Mamun, M. R. et al. (2022) ‘Synthesis, characterization, and photocatalytic performance of methyl orange in aqueous TiO2 suspension under UV and solar light irradiation’, South African Journal of Chemical Engineering40 (1), pp. 113-125. doi: https://doi.org/10.1016/j.sajce.2022.02.002
Al-Mamun, M. R. et al. (2023) ‘Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative study of methyl orange dye degradation in aqueous solution’,  Heliyon,  9 (6),  p. e16506. doi: https://doi.org/10.1016/j.heliyon.2023.e16506.
Anbarasu, S. et al. (2020) ‘Visible light mediated photocatalytic activity of Ni-doped Al2O3 nanoparticles’, Surfaces and Interfaces, 18, p. 100416. doi: https://doi.org/10.1016/j.surfin.2019.100416
Athar, T. (2013) ‘Synthesis and characterization of strontium oxide nanoparticles via wet process’, Materials Focus2(6), pp. 450-453. doi: https://doi.org/10.1016/j.surfin.2019.100416/10.1166/mat.2013.1121
Baeissa, E. S. (2016) ‘Environmental remediation of aqueous methyl orange dye solution via photocatalytic oxidation using AgGdFeO3 nanoparticles’ Journal of Alloys and Compounds678, pp. 267-272. doi: https://doi.org/10.1016/j.jallcom.2016.04.007
Barzinjy, A. A., et al. (2020) ‘Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation’, Journal of Materials Science: Materials in Electronics31 (14), pp. 11303-11316. doi: https://doi.org/10.1007/s10854-020-03679-y.
Darr, J. A. et al. (2017) ‘Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions’, Chemical Reviews117(17), pp. 11125-11238. doi: https://doi.org/10.1021/acs.chemrev.6b00417
Darwish, A. A. A., Rashad, M., and AL-Aoh, H. A. (2019) ‘Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies’, Dyes and Pigments160, pp. 563-571. doi: https://doi.org/10.1016/j.dyepig.2018.08.045
Das, P. K. et al. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management18, p. 100679. doi: https://doi.org/10.1016/j.enmm.2022.100679
Dawoud, T. M. et al. (2020) ‘Photocatalytic degradation of an organic dye using Ag doped ZrO2 nanoparticles: Milk powder facilitated eco-friendly synthesis,’ Journal of King Saud University-Science32(3), pp. 1872-1878. doi: https://doi.org/10.1016/j.jksus.2020.01.040
Dizaj, S. M. et al. (2014) ‘Antimicrobial activity of the metals and metal oxide nanoparticles’, Materials Science and Engineering: C44, 278-284. doi: https://doi.org/10.1016/j.msec.2014.08.031
Hanafi, M. F., and Sapawe, N. (2020) ‘An overview of recent developments on semiconductor catalyst synthesis and modification used in photocatalytic reaction’, Materials Today: Proceedings31, pp. A151-A157. doi: https://doi.org/10.1016/j.matpr.2021.01.262
Harish, S. et al. (2017) ‘Synthesis of ZnO/SrO nanocomposites for enhanced photocatalytic activity under visible light irradiation’, Applied surface science418, pp. 147-155. doi: https://doi.org/10.1016/j.apsusc.2017.01.164
Hazarika, A., et al. (2022). An overview of the role of nanoparticles in sustainable agriculture. Biocatalysis and Agricultural Biotechnology43, p. 102399. doi: https://doi.org/10.1016/j.bcab.2022.102399
Ikram, M. et al. (2021) ‘Efficient dye degradation, antimicrobial behavior and molecular docking analysis of gold (Au) and cellulose nanocrystals (CNC)-doped strontium oxide nanocomposites’, Journal of Nanostructure in Chemistry, pp. 1-18. doi: https://doi.org/10.1007/s40097-021-00452-3
Ikram, M. et al. (2022) ‘Facile synthesis of starch and tellurium doped SrO nanocomposite for catalytic and antibacterial potential: In silico molecular docking studies’,  International Journal of Biological Macromolecules221, pp. 496-507. doi: https://doi.org/10.1016/j.ijbiomac.2022.09.034
Jenifer, A., Sastri, M. S., and Sriram, S. (2021) ‘Photocatalytic dye degradation of V2O5 nanoparticles—An experimental and DFT analysis’, Optik243, p. 167148. doi: https://doi.org/10.1016/j.ijleo.2021.167148
Kalidindi, S. B., and Jagirdar, B. R. (2012) ‘Nanocatalysis and prospects of green chemistry’, ChemSusChem5(1), pp. 65-75. doi: https://doi.org/10.1002/cssc.201100377
Khalil, K. D., et al. (2022) ‘Chitosan-strontium oxide nanocomposite: preparation, characterization, and catalytic potency in thiadiazoles synthesis’, Polymers14(14), p. 2827. doi: https://doi.org/10.3390/polym14142827
Khan, A., Naeem, A., and Mahmood, T. (2020a) ‘Kinetic studies of methyl orange and Congo red adsorption and photocatalytic degradation onto PVP-functionalized ZnO’, Kinetics and Catalysis61, pp. 730-739. doi: https://doi.org/10.1134/S0023158420050055
Khan, I. et al. (2020b) ‘Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation’, Journal of Materials Science: Materials in Electronics31, pp. 8971-8985. doi: https://doi.org/10.1007/s10854-020-03431-6
Kouhbanani, M. A. J. et al. (2018) ‘Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange’, Materials Research Express5(11), p. 115013. doi: https://doi.org/10.1088/2053-1591/aadde8
Krishnan, A. et al. (2021) ‘Tuning of photocatalytic performance of CeO2-Fe2O3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes’, Surfaces and Interfaces22, p. 100808. doi: https://doi.org/10.1016/j.surfin.2020.100808
Lee, H. et al. (2020) ‘Heterogeneous catalysts using strontium oxide agglomerates depositing upon titanium plate for enhancing biodiesel production,’ Catalysts11(1), p. 30. doi: https://doi.org/10.3390/catal11010030
Liu, N., et al. (2014) ‘A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications’, Catalysis Today225, pp. 34-51. doi: https://doi.org/10.1016/j.cattod.2013.10.090
Makeswari, M., and Saraswathi, P. (2020) ‘Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite’, SN Applied Sciences2(3), p. 336. doi: https://doi.org/10.1007/s42452-020-1980-4
Mazumder, N. A., and Rano, R. (2018) ‘Synthesis and characterization of fly ash modified copper oxide (FA/CuO) for photocatalytic degradation of methyl orange dye’, Materials Today: Proceedings5(1), 2281-2286. doi: https://doi.org/10.1016/j.matpr.2017.09.230
Mishra, P. K., Biswal, S. K., and Sahu, D. (2022) ‘Synthesis and photocatalytic activity of Ni doped SnO2 nanoparticles for removal of toxic industrial dyes’, Materials Today: Proceedings68, pp. 80-84. doi: https://doi.org/10.1016/j.matpr.2022.06.104
Mohajerani, A., et al. (2019) ‘Nanoparticles in construction materials and other applications, and implications of nanoparticle use’, Materials12(19), p. 3052. doi: https://doi.org/10.3390/ma12193052
Parida, K. M. et al. (2008) ‘Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light’, Journal of colloid and interface science318(2), pp. 231-237. doi: https://doi.org/10.1016/j.jcis.2007.10.028
Peerakiatkhajohn, P. et al. (2021) ‘Efficient and rapid photocatalytic degradation of methyl orange dye using Al/ZnO nanoparticles’, Nanomaterials11(4), p. 1059. https://doi.org/10.3390/nano11041059
Raliya, R. et al. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Applied Nanoscience7, pp. 253-259. doi: https://doi.org/10.1007/s13204-017-0565-z
Sasikala, R. et al. (2016) ‘Photocatalytic degradation of trypan blue and methyl orange azo dyes by cerium loaded CuO nanoparticles’, Environmental Nanotechnology, Monitoring & Management6, pp. 45-53. doi: https://doi.org/10.1016/j.enmm.2016.07.001
Sinha, I., and De, A. K. (2020) ‘An overview of synthesis techniques for preparing doped photocatalysts’, Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, pp. 1-13. doi: https://doi.org/10.1016/B978-0-12-818598-8.00001-8
Slimani, Y. et al. (2023) ‘Synthesis of Ce and Sm Co-doped TiO2 nanoparticles with enhanced photocatalytic activity for rhodamine B dye degradation’, Catalysts13(4), p. 668. doi: https://doi.org/10.3390/catal13040668
Subaihi, A., and Naglah, A. M. (2022) ‘Facile synthesis and characterization of Fe2O3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye’, Arabian Journal of Chemistry15(2), p. 103613. doi: https://doi.org/10.1016/j.arabjc.2021.103613
Sun, T., Qiu, J., and Liang, C. (2008) ‘Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays’, The Journal of Physical Chemistry C112(3), pp. 715-721. doi: https://doi.org/10.1021/jp710071f
Tabassum, H. et al. (2019) ‘Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy & Environmental Science12(10), pp. 2924-2956. doi: https://doi.org/10.1039/C9EE00315K
Tan, H. W. et al. (2019) ‘Metallic nanoparticle inks for 3D printing of electronics’, Advanced Electronic Materials5(5), p. 1800831. doi: https://doi.org/10.1002/aelm.201800831
Tong, T. et al. (2008) ‘Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation’, Journal of Hazardous Materials155(3), pp. 572-579. doi: https://doi.org/10.1016/j.jhazmat.2007.11.106
Tran, V. A. et al. (2021) ‘Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4-ZnO nanoparticles’,  Materials Letters284, p. 128902. doi: https://doi.org/10.1016/j.matlet.2020.128902
Verma, M., Singh, K. P., and Kumar, A. (2020) ‘Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes’, Solid State Sciences99, p. 105847. doi: https://doi.org/10.1016/j.solidstatesciences.2019.02.008
Wang, Z. et al. (2009) ‘Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method’, The Journal of Physical Chemistry C113 (11), pp. 4612-4617. doi: https://doi.org/10.1021/jp8107683
Yang, G., and Park, S. J. (2019) ‘Conventional and microwave hydrothermal synthesis and application of functional materials: A review’, Materials12(7), p. 1177. doi: https://doi.org/10.3390/ma12071177
Zada, A. et al. (2022) ‘Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction’, Zeitschrift für Physikalische Chemie236(1), pp. 53-66. doi: https://doi.org/10.1515/zpch-2020-1778
Zhang, L. et al. (2008) ‘Nanoparticles in medicine: therapeutic applications and developments’,  Clinical Pharmacology & Therapeutics83(5), pp. 761-769. doi: https://doi.org/10.1038/sj.clpt.6100400