Al-Abdallat, Y.
et al. (2019) ‘Photocatalytic degradation dynamics of methyl orange using coprecipitation synthesized Fe
3O
4 nanoparticles’,
Water, Air, & Soil Pollution,
230, pp. 1-16. doi:
https://doi.org/10.1007/s11270-019-4310-y.
Al-Mamun, M. R.
et al. (2022) ‘Synthesis, characterization, and photocatalytic performance of methyl orange in aqueous TiO
2 suspension under UV and solar light irradiation’,
South African Journal of Chemical Engineering,
40 (1), pp. 113-125. doi:
https://doi.org/10.1016/j.sajce.2022.02.002
Al-Mamun, M. R.
et al. (2023) ‘Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative study of methyl orange dye degradation in aqueous solution’,
Heliyon,
9 (6), p. e16506. doi:
https://doi.org/10.1016/j.heliyon.2023.e16506.
Baeissa, E. S. (2016) ‘Environmental remediation of aqueous methyl orange dye solution via photocatalytic oxidation using AgGdFeO
3 nanoparticles’
Journal of Alloys and Compounds,
678, pp. 267-272. doi:
https://doi.org/10.1016/j.jallcom.2016.04.007
Barzinjy, A. A.,
et al. (2020) ‘Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation’,
Journal of Materials Science: Materials in Electronics,
31 (14), pp. 11303-11316. doi:
https://doi.org/10.1007/s10854-020-03679-y.
Darr, J. A.
et al. (2017) ‘Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions’,
Chemical Reviews,
117(17), pp. 11125-11238. doi:
https://doi.org/10.1021/acs.chemrev.6b00417
Darwish, A. A. A., Rashad, M., and AL-Aoh, H. A. (2019) ‘Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies’,
Dyes and Pigments,
160, pp. 563-571. doi:
https://doi.org/10.1016/j.dyepig.2018.08.045
Das, P. K.
et al. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment.
Environmental Nanotechnology, Monitoring & Management,
18, p. 100679. doi:
https://doi.org/10.1016/j.enmm.2022.100679
Dawoud, T. M.
et al. (2020) ‘Photocatalytic degradation of an organic dye using Ag doped ZrO
2 nanoparticles: Milk powder facilitated eco-friendly synthesis,’
Journal of King Saud University-Science,
32(3), pp. 1872-1878. doi:
https://doi.org/10.1016/j.jksus.2020.01.040
Hanafi, M. F., and Sapawe, N. (2020) ‘An overview of recent developments on semiconductor catalyst synthesis and modification used in photocatalytic reaction’,
Materials Today: Proceedings,
31, pp. A151-A157. doi:
https://doi.org/10.1016/j.matpr.2021.01.262
Harish, S.
et al. (2017) ‘Synthesis of ZnO/SrO nanocomposites for enhanced photocatalytic activity under visible light irradiation’,
Applied surface science,
418, pp. 147-155. doi:
https://doi.org/10.1016/j.apsusc.2017.01.164
Ikram, M.
et al. (2021) ‘Efficient dye degradation, antimicrobial behavior and molecular docking analysis of gold (Au) and cellulose nanocrystals (CNC)-doped strontium oxide nanocomposites’,
Journal of Nanostructure in Chemistry, pp. 1-18. doi:
https://doi.org/10.1007/s40097-021-00452-3
Ikram, M.
et al. (2022) ‘Facile synthesis of starch and tellurium doped SrO nanocomposite for catalytic and antibacterial potential: In silico molecular docking studies’,
International Journal of Biological Macromolecules,
221, pp. 496-507. doi:
https://doi.org/10.1016/j.ijbiomac.2022.09.034
Khalil, K. D.,
et al. (2022) ‘Chitosan-strontium oxide nanocomposite: preparation, characterization, and catalytic potency in thiadiazoles synthesis’,
Polymers,
14(14), p. 2827. doi:
https://doi.org/10.3390/polym14142827
Khan, A., Naeem, A., and Mahmood, T. (2020a) ‘Kinetic studies of methyl orange and Congo red adsorption and photocatalytic degradation onto PVP-functionalized ZnO’,
Kinetics and Catalysis,
61, pp. 730-739. doi:
https://doi.org/10.1134/S0023158420050055
Khan, I.
et al. (2020b) ‘Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation’,
Journal of Materials Science: Materials in Electronics,
31, pp. 8971-8985. doi:
https://doi.org/10.1007/s10854-020-03431-6
Kouhbanani, M. A. J. et al. (2018) ‘Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange’, Materials Research Express, 5(11), p. 115013. doi: https://doi.org/10.1088/2053-1591/aadde8
Krishnan, A.
et al. (2021) ‘Tuning of photocatalytic performance of CeO
2-Fe
2O
3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes’,
Surfaces and Interfaces,
22, p. 100808. doi:
https://doi.org/10.1016/j.surfin.2020.100808
Lee, H.
et al. (2020) ‘Heterogeneous catalysts using strontium oxide agglomerates depositing upon titanium plate for enhancing biodiesel production,’
Catalysts,
11(1), p. 30. doi:
https://doi.org/10.3390/catal11010030
Liu, N.,
et al. (2014) ‘A review on TiO
2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications’,
Catalysis Today,
225, pp. 34-51. doi:
https://doi.org/10.1016/j.cattod.2013.10.090
Makeswari, M., and Saraswathi, P. (2020) ‘Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite’,
SN Applied Sciences,
2(3), p. 336. doi:
https://doi.org/10.1007/s42452-020-1980-4
Mazumder, N. A., and Rano, R. (2018) ‘Synthesis and characterization of fly ash modified copper oxide (FA/CuO) for photocatalytic degradation of methyl orange dye’,
Materials Today: Proceedings,
5(1), 2281-2286. doi:
https://doi.org/10.1016/j.matpr.2017.09.230
Mishra, P. K., Biswal, S. K., and Sahu, D. (2022) ‘Synthesis and photocatalytic activity of Ni doped SnO
2 nanoparticles for removal of toxic industrial dyes’,
Materials Today: Proceedings,
68, pp. 80-84. doi:
https://doi.org/10.1016/j.matpr.2022.06.104
Mohajerani, A.,
et al. (2019) ‘Nanoparticles in construction materials and other applications, and implications of nanoparticle use’,
Materials,
12(19), p. 3052. doi:
https://doi.org/10.3390/ma12193052
Parida, K. M.
et al. (2008) ‘Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light’,
Journal of colloid and interface science,
318(2), pp. 231-237. doi:
https://doi.org/10.1016/j.jcis.2007.10.028
Peerakiatkhajohn, P.
et al. (2021) ‘Efficient and rapid photocatalytic degradation of methyl orange dye using Al/ZnO nanoparticles’,
Nanomaterials,
11(4), p. 1059.
https://doi.org/10.3390/nano11041059
Raliya, R.
et al. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation.
Applied Nanoscience,
7, pp. 253-259. doi:
https://doi.org/10.1007/s13204-017-0565-z
Sasikala, R.
et al. (2016) ‘Photocatalytic degradation of trypan blue and methyl orange azo dyes by cerium loaded CuO nanoparticles’,
Environmental Nanotechnology, Monitoring & Management,
6, pp. 45-53. doi:
https://doi.org/10.1016/j.enmm.2016.07.001
Slimani, Y.
et al. (2023) ‘Synthesis of Ce and Sm Co-doped TiO2 nanoparticles with enhanced photocatalytic activity for rhodamine B dye degradation’,
Catalysts,
13(4), p. 668. doi:
https://doi.org/10.3390/catal13040668
Subaihi, A., and Naglah, A. M. (2022) ‘Facile synthesis and characterization of Fe
2O
3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye’,
Arabian Journal of Chemistry,
15(2), p. 103613. doi:
https://doi.org/10.1016/j.arabjc.2021.103613
Sun, T., Qiu, J., and Liang, C. (2008) ‘Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays’,
The Journal of Physical Chemistry C,
112(3), pp. 715-721. doi:
https://doi.org/10.1021/jp710071f
Tabassum, H.
et al. (2019) ‘Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices.
Energy & Environmental Science,
12(10), pp. 2924-2956. doi:
https://doi.org/10.1039/C9EE00315K
Tong, T.
et al. (2008) ‘Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation’,
Journal of Hazardous Materials,
155(3), pp. 572-579. doi:
https://doi.org/10.1016/j.jhazmat.2007.11.106
Wang, Z.
et al. (2009) ‘Highly photocatalytic ZnO/In
2O
3 heteronanostructures synthesized by a coprecipitation method’,
The Journal of Physical Chemistry C,
113 (11), pp. 4612-4617. doi:
https://doi.org/10.1021/jp8107683
Yang, G., and Park, S. J. (2019) ‘Conventional and microwave hydrothermal synthesis and application of functional materials: A review’,
Materials,
12(7), p. 1177. doi:
https://doi.org/10.3390/ma12071177
Zada, A.
et al. (2022) ‘Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction’,
Zeitschrift für Physikalische Chemie,
236(1), pp. 53-66. doi:
https://doi.org/10.1515/zpch-2020-1778
Zhang, L.
et al. (2008) ‘Nanoparticles in medicine: therapeutic applications and developments’,
Clinical Pharmacology & Therapeutics,
83(5), pp. 761-769. doi:
https://doi.org/10.1038/sj.clpt.6100400