Document Type : Research Paper

Authors

Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.

10.22126/arww.2022.6753.1219

Abstract

Herbicides such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) are generally carcinogenic and their existence in water cause many problems. In this work, Fe3O4/FexCuyWzOt core/shell magnetic photocatalyst was used to remove 2, 4-D. The statistical analysis of the results of the Box-Behnken experimental design method revealed that among the constituents of the photocatalyst shell, iron had the highest effect on 2, 4-D photodegradation. The photocatalyst composition was optimized using the response surface method. The photocatalyst formulation was determined using ICP method: Fe3O4/Fe0.874Cu0.349W0.004O1.525. XRD analysis confirmed the formation of Fe3O4, CuO, and WO3 in the photocatalyst shell. TEM images showed the photocatalyst core/shell structure. Fe3O4/Fe0.874Cu0.349W0.004O1.525 photodegraded 2, 4-D under ultraviolet light irradiation with the maximum yield of 90%. The photocatalyst was also active under sunlight and LED. The kinetics of the 2, 4-D photodegradation reaction under ultra violet light irradiation was studied. It followed first order kinetic model. The rate constant of the reaction was 0.0118 min-1. The photocatalyst activity of Fe3O4/Fe0.874Cu0.349W0.004O1.525 remained constant after the fourth cycle of reuse, which is the good advantage.

Keywords

Abdullah A. H., Mun L.K., Zainal Z., Hussein M.Z., Photodegradation of chlorophenoxyacetic acids by ZnO/γ-Fe2O3 nanocatalysts: A comparative study, International Journal of Chemistry 5 (2013) 56-65.
Abdollahi Y., Abdullah A.H., Zainal Z., Yusof N.A., Photodegradation of o-cresol by ZnO under UV irradiation, Journal of American Science 7 (2011) 165-170.
Aghel, S., Bahramifar, N., Younesi, H., Kinetics of photocatalytic degradation of reactive black B using core-shell TiO2-coated magnetic nanoparticle, Fe3O4@SiO2@TiO2, Journal of Applied Research in Water and Wastewater 6 (2016) 253-259.
Akhlaghian F., Najafi A., CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater, Scientia Iranica C 25 (2018) 3345-3353.
Arsalani N., Panahian Y., Nasiri R., Fabrication of novel magnetic F- TiO2(B)/carbon nanostructures nanocomposites as photocatalysts for malachite green degradation under visible light, Materials Science & Engineering B 251 (2019) 114448.
Atarodi H., and Faghihian H., Selective photodegradation of atrazine by a novel molecularly imprinted nanophotocatalyst prepared on the basis of chitosan, Journal of Photochemistry & Photobiology A 382 (2019) 111892.
Banihashemi M., Dalali N., Sehati N., Farajmand B., Decoration of Fe3O4@SiO2@ZnO as a high performance nanosorbent on a stir bar microextraction device for preconcentration and determination of cadmium in real water samples, Microchemical Journal 154 (2020) 104599.
Balakrishnan A., Appunni S., Gopalram K., Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, International Journal of Biological Macromolecules 161 (2020) 282-291.
Bian X., Chen J., Ji R., Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: kinetic study and model, Materials 6 (2013) 1530-1542.
Browne A.M., Moore P.A., The effects of sublethal levels of 2,4- dichlorophenoxyacetic acid herbicide (2,4-d) on feeding behaviors of the crayfish o. rusticus, Archives of Environmental Contamination and Toxicology 67 (2014) 234-244.
Chang X., Thind S.S., Tian M., Hossain M.M., Chen A., Significant enhancement of the photoelectrochemical activity of nanoporous TiO2 for environmental applications, Electrochimica Acta 173 (2015) 728-735.
Chenchana A., Nemamcha A., Moumeni H., Doña Rodríguez J.M., Araña J., Navío J.A., González Díaz O., Pulido Melián E., Photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2(B)/anatase nanobelts and Au-TiO2(B)/anatase nanobelts, Applied Surface Science 467–468 (2019) 1076-1087.
Chen Z., Lin F., He D., Jiang H., Zhang J., Wang X., Huang M., A hybrid composite catalyst of Fe3O4 nanoparticles-based carbon for electrochemical reduction of oxygen, New Journal of Chemistry 41 (2017) 4959-4965.
Costa L.G., Aschner M., Toxicology of pesticides. In: Reference Module in biomedical sciences, Elsevier, pp. 1-9, (2014).
Daneshvar N., Salari D., Khataee A.R., Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry 162 (2004) 317-322.
Ding J., Liu L., Xue J., Zhou Z., He G., Chen H., Low-temperature preparation of magnetically separable Fe3, O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light, Journal of Alloys and Compounds 668 (2016) 649-656.
Dong S., Feng J., Fan M., Pi Y., Hu L., Han X., Liu M., Sun J., Sun J., Recent developments in heterogeneous photocatalytic water treatment using visible light responsive photocatalysts: a review, RSC Advances 5 (2015) 14610-14630.
Fiorenza R., Di Mauro A., Cantarella M., Privitera V., Impellizzeri G., Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO2, Journal of Photochemistry & Photobiology A: Chemistry 380 (2019) 111872.
Gherbi R., Nasrallah N., Amrane A., Maachi R., Trari M., Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2, Journal of Hazardous Matterials 186 (2011) 1124-1130.
Gu J., Chen H., Jiang F., Wang X., Li L., All-solid-state Z-scheme Co9S8/graphitic carbon nitride photocatalysts for simultaneous reduction of Cr(VI) and oxidation of 2,4- dichlorophenoxyacetic acid under simulated solar irradiation, Chemical Engineering Journal 360 (2019) 188-1198.
Habibi-Yangjeh A., Mousavi M., Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light, Advanced Powder Technology 29 (2018) 1379-1392.
Hatamzadeh, S., Keramati, N., Mehdipour Ghazi, M., Synthesis and characterization of Ag-ZnO@Clinoptilolite for photocatalytic degradation of Tetracycline, Journal of Applied Research in Water and Wastewater 12 (2019) 138-143.
Hong R.Y., Zhang S.Z., Di G.Q., Li H.Z., Zheng Y., Ding J., Wei D.G., Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Materials Research Bulletin 43 (2008) 2457-2468.
Hong R.Y., Li J.H., Cao X., Zhang S.Z., Di G.Q., Li H.Z., Wei D.G., On the Fe3O4/Mn1−xZnxFe2O4 core/shell magnetic nanoparticles, Journal of Alloys and Compounds 480 (2009) 947-953.
Huang D., Yang T., Mo Z., Guo Q., Quan S., Luo C., Liu L., Preparation of Graphene/TiO2 Composite Nanomaterials and its photocatalytic performance for the degradation of 2,4-dichlorophenoxyacetic acid, Journal of Nanomaterials 2016 (2016) 5858906.
Huy B.T., Jung D., Phuong N.T.K., Lee Y., Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO2@MgFe2O4 core@shell structure, Chemosphere 184 (2017) 849-856.
Kalambate P.K., Dhanjai, Huang Z., Li Y., Shen Y., Xie M., Huang Y., Srivastava A.K., Core@shell nanomaterials based sensing devices: A review, Trends in Analyyical Chemistry 115 (2019) 147-161.
Khairy M., Polyaniline–Zn0.2Mn0.8 Fe2O4 ferrite core–shell composite: Preparation, characterization and properties, Journal of Alloys and Compounds 608 (2014) 283-291.
Kundu S., Pala A., Dikshit A.K., UV induced degradation of herbicide 2,4-D: kinetics, mechanism and effect of various conditions on the degradation, Separation and Purification Technology 44 (2005) 121-129.
Lam S.-M., Sin J.-C., Abdullah A.Z., Mohamed A.R., Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites, Journal of Molecular Catalysis A: Chemical 370 (2013) 123-131.
Leofanti G., Padovan M., Tozzola G., Venturelli B., Surface area and pore texture of catalysts, Catalysis Today 41 (1998) 207-219.
Macías-Tamez R., Villanueva-Rodríguez M., Ramos-Delgado N.A., Maya-Treviño L., Hernández-Ramírez A., Comparative study of the photocatalytic degradation of the herbicide 2,4-d using WO3/TiO2 and Fe2O3/TiO2 as catalysts, Water, Air, and Soil Pollution 228 (2017) 379-390.
Marin-Morales M. A., Ventura-Camargo B.C., Hoshina M.M. Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health. In: Price A., Kelton J., Herbicides: Current research and case studies in use rice, BoD-Books on Demand; pp. 399-443, (2013).
Meenakshi G., Sivasamy A. 2017 Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2,4-D. Ecotoxicology and Environmental Safety 135 (2017) 243-251.
Mehrabadi Z., Faghihian H., Clinoptilolite modified with TiO2 for simultaneous elimination of two herbicides; 2,4-D and MCPA by UV and sunlight-assisted photocatalytic degradation, Materials Research Bulletin 119 (2019) 110569.
Mirzai M., Akhlaghian F., Rahmani F., Photodegration of ciprofloxacin in water using photocatalyst of zinc oxide nanowires doped with copper and cerium oxides, Water and Environment Journal 34 (2020) 420-431.
Irzapour M., Akhlaghian F., Core/shell magnetic nanoparticles of Fe3O4/MnxZnyFe3–x–yO4 for phosphate adsorption from water: effects of adsorbent composition using response surface methodology, Desalination and Water Treatment 137 (2019) 114-124.
Mohite R.G., Garg A., Performance of heterogeneous catalytic wet oxidation for the removal of phenolic compounds: catalyst characterization and effect of pH, temperature, metal leaching and non-oxidative hydrothermal reaction, Journal of Environmental Chemical Engineering 5 (2017) 468-478.
Momeni M.M., Hakimian M., Kazempour A., In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst, Ceramics International 41 (2015) 13692-13701.
National drinking water regulations: 2,4-D, https://nepis.epa.gov/Exe/ZyPDF.cgi/91022ZI1.PDF?Dockey=91022ZI1.PDF; 1995 (accessed 4 September 2020).
Nasir A.M., Jaafar J., Aziz F., Yusof N., Salleh W.N.W., Ismail, A.F., Aziz, M., A review on floating nanocomposite photocatalyst: Fabrication and applications for wastewater treatment, Journal of Water Process Engineering 36 (2020) 101300.
Pham T.-D., Lee B.-K., Lee C.-H., The advanced removal of benzene from aerosols by photocatalyticoxidation and adsorption of Cu–TiO2/PU under visible light irradiation, Applied Catalysis B: Environmental 182 (2016) 172-183.
Rabanimehr, F., Farhadian, M., Solaimany Nazar, A.R., Behineh, E.S., Simulation of photocatalytic degradation of methylene blue in planar microreactor with integrated ZnO nanowires, Journal of Applied Research in Water and Wastewater 8 (2021) 36-40.
Razani A, Abdullah A.H., Fitrianto A., Yuosof N.A., Gaya U.I., Sol-gel synthesis of Fe2O3-doped TiO2 for optimized photocatalytic degradation of 2,4- dichlorophenoxy acetic acid, Oriental Journal of Chemistry 33 (2017) 1959-1968.
Rebelo S.L.H., Melo A., Coimbra R., Azenha M.E., Pereira M.M., Burrows H.D., Sarakha M., Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers, Environmental Chemistry Letters 5 (2007) 29-33.
Sandeep S., Nagashree K.L., Maiyalagan T., Keerthiga G., Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid—A comparative study in hydrothermal TiO2 and commercial TiO2, Applied Surface Science 449 (2018) 371-379.
Seck E.I., Doña-Rodíguez J.M., Fernández-Rodríguez C., González-Díaz O.M., Araña J., Pérez-Peña, J., Photocatalytical removal of bentazon using commercial and sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies, Chemical Engineering Journal 203 (2012) 52-62.
Suresh S., Karthikeyan S., Jayamoorthy K. FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves, Journal of Science: Advanced Materials and Devices 1 (2016) 343-350.
Tang L., Zhang S., Zeng G.-M., Zhang Y., Yang G.-D., Chen J., Wang J.-J., Wang J.-J., Zhou Y.-Y., Deng Y.-C., Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon, Journal of Colloid and Interface Science 445 (2015) 1-8.
Tang Y., Luo S., Teng Y., Liu C., Xu X., Zhang X., Chen L., Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, Journal of Hazardous Materials 241– 242 (2012) 323-330.
Widiyandari H., Purwanto A., Balgis R., Ogi T., Okuyama K., CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation, Chemical Engineering Journal 180 (2012) 323-329.
Wu L., Li A., Gao G., Fei Z., Xu S., Zhang Q., Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine, Journal of Molecular Catalysis A: Chemical 269 (2007) 183-189.
Wu P., Liu Z., Chen D., Zhou M., Wei J., Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting, Applied Surface Science 440 (2018) 1101-1106.
Xie W., Liu L., Cui W., An W., Enhancement of photocatalytic activity under visible light irradiation via the AgI@TCNQ core-shell structure, Materials 12 (2019) 1679.
Youssef A.M., EL-Didamony H., El-Sharabasy S.F., Sobhy M., Hassan A.F., Bluáneke R., Adsorption of 2, 4 dichlorophenoxyacetic acid on different types of activated carbons based date palm pits: kinetic and thermodynamic studies, International Research Journal of Pure & Applied Chemistry 14 (2017) 1-15.
Yusa V., Millet M., Coscolla C., Roca M., Analytical methods for human biomonitoring of pesticides. A review, Analytica Chimica Acta 891 (2015) 15-31.
Zandsalimi Y., Maleki A., Shahmoradi B., Dehestani S., Rezaee R., McKay G., Photocatalytic removal of 2,4-Dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilised on glass beads, Environmental Technology (2020).