Document Type : Research Paper

Authors

1 1Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 2Laboratory of Science and Technology of Water and Environment LST2E, Mohammed Chérif Messaadia University, Souk-Ahras, Algeria.

2 1Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 3Faculty of Sciences and Technology, Department of civil engineering, University of Abbès Laghrour, Khenchela, Algeria.

3 1Faculty of Sciences and Technology, Department of process engineering, University of Mohamed Chérif Messaadia, Souk-Ahras, Algeria. 4Laboratory of Modeling and Socio-Economic Analysis in Water Science MASESE, Mohammed Chérif Messaadia University, Souk-Ahras, Algeria.

10.22126/arww.2021.1817

Abstract

The objective of this study was to evaluate the coagulation-flocculation process in
the clarification of leachate from the landfill Technical Center of Souk-Ahras city
using three coagulants based on iron: ferrous sulfate FeSO4.7H2O; ferrous chloride
FeCl2.4H2O and ferric chloride FeCl3. The influence of some parameters namely
pH leachate, dose and nature of coagulant and nature of flocculant was studied.
The best treatment efficiency was obtained at 20 % of FeCl3 giving a turbidity of
4.09 NTU with pH adjustment of the raw leachate at acidic pH (3.5 ± 0.2) before
coagulant addition and at a basic pH (7.5 ± 0.2) after addition of coagulant. The
iron valence and the nature of anion at which is linked, played a determinant role
in the clarification of leachate. The treatments made with ferric chloride in the
presence of a flocculant have proved that the starch was more efficient than lime
giving abatement rates of 99 % for COD and 85 % for BOD5.

Keywords

Abrile M.G., Fiasconaro M.L., Orecchia D.S., Manzo R.M., Lovato M.E.,
Utilization of sludge derived from landfill leachate treatment as a
source of nutrients for the growth of Nicotiana alata L, Journal of
Environmental Management 289 (2021) 1-8.
Achour S., and Guesbaya N., Coagulation-floculation par le sulfate
d’aluminium de composés organiques phénoliques et de substances
humiques (Coagulation-flocculation by aluminium sulphate of phenolic organic compounds and humic substances), Larhyss
Journal 4 (2005) 153–168.
Al-Malack M.H., Abuzaid N.S., El-Mubarak A.H., Coagulation of
polymeric wastewater discharged by a chemical factory, Water
Research 33 (1999) 521–529.
Barrington S.F., Kaoser S., Shin M., Gélinas J.B., Precipitating swine
manure phosphorus using fine limestone dust, Canadian Biosystems
Engineering 46 (2004) 6-1.
Bouranene S., Sedira N., Fievet P., Attia N., Treatment of paint
wastewater by coagulation process, Filtration & Separation 52 (2015)
42-45.
Cheng S.Y., Show P.L., Juan J.C., Chang J.S., Lau B.F., Lai S.H., Ng
E.P., Yian H.C., Ling T.C., Landfill leachate wastewater treatment to
facilitate resource recovery by a coagulation-flocculation process via
hydrogen bond, Chemosphere 262 (2021) 1-9.
Chiguer H., EL Khayyat F., EL Rhaouat O., Rifki R., Bensaid A., EL
Kharrim K., Belghyti D., Evaluation de la charge polluante des lixiviats
de la décharge contrôlée de la ville d’Essaouira (MAROC) (Evaluation
of the Pollution Load of Leachates of the Controlled Landfill of
Essaouira City (MOROCCO)), International Journal of Innovation and
Applied Studies 14 (2016) 863–874.
Chávez Porras A., Pinzon Uribe L.F., Velasquez Castiblanco, Y.L.,
Análisis comparativo de ensayos de Fitorremediación en lodos de
lixiviado aplicando Análisis Envolvente de Datos (Comparative
analysis of Phytoremediation tests in leachate sludge applying Data
Envelopment Analysis), INGE CUC 13 (2017) 79–83.
Djeffal K., Bouranene S., Fievet P., Déon S., Ghied A., Treatment of
controlled discharge leachate by coagulation-flocculation: influence
of operational conditions, Separation Science and Technology 56 (1)
(2021) 168–183.
Fatta D., Papadopoulos A., Loizidou M., A study on the landfill leachate
and its impact on the groundwater quality of the greater area,
Environmental Geochemical Health 21 (1999) 175-190.
Fersi C., Ben Gamra A., Bozrati H., Gorgi C., Irmani A., Characterizing
the performance of coagulation-flocculation using natural coagulants
as pretreatment of tannery wastewater, Journal of Materials
and Environmental Science 9 (2018) 2379-2386.
Graupner de Godoy L.G., Rohden A.B., Garcez M.R., Da Dalt S.,
Bonan Gomes L., Production of supplementary cementitious material
as a sustainable management strategy for water treatment sludge
waste, Case Studies in Construction Materials 12 (2020) 1-10.
Huang M., Liu Z., Li A., Yang H., Dual functionality of a
graft starch flocculant: Flocculation and antibacterial performance,
Journal of Environmental Management 196 (2017) 63-71.
Jinghuan L., Guangren Q., Jianyong L., Zhi Ping X., Anaerobic
methanogenesis of fresh leachate from municipal solid waste: A brief
review on current progress, Renewable and Sustainable Energy
Reviews 49 (2015) 21-28.
Krentz D., Lohmann C., Schwarz S., Bratskaya S., Liebert T., Laube J.,
Heinze T., Kulicke W., Properties and flocculation efficiency of highly
cationized starch derivatives, Starch–Stärke 58 (2006) 161-169.
Liang L., Morgan J.J., Chemical aspects of iron oxide coagulation in
water: Laboratory studies and implications for natural systems,
Aquatic Sciences 52 (1990) 1015-1621.
Madeira L., Almeida A., Teixeira M.R., Prazeres A., Chaves H., Fatima
Carvalho F., Immediate one-step lime precipitation and atmospheric
carbonation as pretreatment for low biodegradable and high nitrogen
wastewaters: A case study of explosives industry, Journal of
Environmental Chemical Engineering 8 (2020) 1-10.
Majdy I., Cherkaoui E., Nounah A., Khamar M., The physico-chemical
treatment by coagulation flocculation of wastewater discharges from
the City of Sale, Journal of Materials and Environmental Science 6
(2015) 834-839.
Martínez-Cruz A., Valencia M.N.R., Araiza-Aguilar J.A., Najera-Aguilar
H.A., Gutierrez-Hernandez R.F, Leachate treatment: comparison of a
bio-coagulant (Opuntia ficus mucilage) and conventional coagulants
using multi-criteria decision analysis, Heliyon 7 (2021) 1-10.
Monette F., Brière F.G., Létourneau M., Duchesne M., Hausler R.,
Traitement des eaux usées par coagulation–floculation avec
recirculation des boues chimiques: Performance générale et stabilité
du procédé (Waste water treatment by coagulation – flocculation with
recirculation of chemical sludge: General performance and stability of
the process), Canadian Journal of Civil Engineering 27 (2000) 702–
718.
Önen V., Göçer M., Taner H.A., Effect of coagulants and flocculants on
dewatering of kaolin suspensions, Journal of Engineering Science 7
(2018) 297-305.
Prasad H., Lohchab R.K., Singh B., Nain A., Kumari M., Lime treatment
of wastewater in a plywood industry to achieve the zero liquid
discharge, Journal of Cleaner Production 240 (2019) 1-6.
Sanphoti N., Towprayoon S., Chaiprasert P., Nopharatana A., The
effects of leachate recirculation with supplemental water addition on
methane production and wasted composition in a simulated tropical
landfill, Journal of Environmental Management 81 (2006) 27–35.
Spinosa L., and Doshi P., Re-thinking sludge management within the
Sustainable Development Goal 6.2, Journal of Environmental
Management 287 (2021) 112338.
Suman M., Khaiwal R., Dahiya R.P., Chandra A., Leachate
characterization and assessment of groundwater pollution near
municipal solid waste landfill site, Environmental
Monitoring and Assessment 118 (2006) 435-456.
Teh C.Y., Wu T.Y., Juan J.C., Potential use of rice starch in coagulationflocculation
process of agro-industrial wastewater: treatment
performance and flocs characterization, Ecological engineering 71
(2014) 509-519
Vandamme D., Foubert I., Boudewijn M., Koenraad M., Flocculation of
microalgae using cationic starch, Journal of Applied Phycology 22
(2010) 525-530.
Xu Y., Liu T.C.Z., Zhu S., Cui F., Shi W., The impact of recycling Alumhumic-
floc (AHF) on the removal of natural organic materials (NOM):
Behavior of coagulation and adsorption, Chemical Engineering
Journal (Amsterdam, Netherlands) 284 (2016) 1049–1057.
Wais-mossa M.T., Mazet M., Adsorption d’acides humiques sur flocs
d’hydroxydes d’aluminium: Influence de la taille des flocs et du sel
d’aluminium (adsorption of humic acids on flocs of aluminium
hydroxides: influence of floc size and aluminuim salt), Environmental
Technology 12 (1991) 51–58.
Wang S., Guo Y., Chen C., Zhang J., Gong Y., Wang Y., Supercritical
water oxidation of landfill leachate, Journal of Waste Management 31
(2011) 2027–2035.
Wei H., Ren J., Li A., Yang H., Sludge dewaterability of a starchbased
flocculant and its combined usage with ferric chloride,
Chemical Engineering Journal 349 (2018) 737-747.