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 One of the most important issues in planning and managing water resources is the 
accurate estimation of monthly input discharge of the reservoirs in the future years, 
which is always associated with uncertainty. To cover these uncertainties, synthetic 
stream flow data generation models have been used by various researchers to 
generate stochastic time series. The computational basis of different stochastic 
models for generating monthly data has been different and this can have a 
significant effect on their performance. Therefore, selection of the best model of 
stochastic data generation for accurate planning and management of a water 
resource system is one of the major concerns of water resources specialists. In this 
research, the performance of parametric models of synthetic stream flow 
generation including Thomas-Fiering, Fragment and ARMA (1,1) and ARMA (1,2) 
combined with Valencia-Schaake and Mejia and Rousselle models were compared 
and evaluated. For this purpose, 30 years data of monthly discharge of Marun river 
in Khuzestan province were used and 900 synthetic monthly flow time series were 
generated using each of the models mentioned above. Based on the obtained 
results, the ARMA (1,2) model combined with the Valencia-Schaake model was 
recognized as the best model, considering the very desired performance in 
preserving the statistical parameters of historical data and generating maximum 
and minimum discharges related to wet and dry periods in different probabilities. 
This model can be used with greater confidence to analyze river systems and 
reservoirs, manage drought and apply water rationing rules in future drought 
conditions. 

©2019 Razi University-All rights reserved. 
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1. Introduction 

 
 Considering the impossibility of dam construction on all rivers and 

consequently the impossibility of water regulation, operation of rivers in 
the low flow conditions will be of particular importance. Any mistake in 
estimating river discharge, especially in drought conditions, can cause 
irreparable damage to various sectors such as agriculture, drinking, 
etc., which will cause many economic and social problems. Therefore, 
accurate knowledge of river flow, especially in drought conditions, is 
essential for the management of water resources utilization. On the 

other hand, since rainfall and consequently river flows are non-
deterministic phenomenon, most of the activities of hydrologists and 
water resources experts have focused on the study, prediction and 
generation of surface flows. Therefore, many decisions regarding water 
resource utilization are based on forecasting and time series analysis 
of hydrological processes. Therefore, it is important to analyze, identify 
and study the behavior of different models of synthetic time series 
generation. The application of different models of prediction and 
generation of synthetic data of hydrological processes for the proper 
management and planning of water resources is under uncertainty 
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conditions. These models are used to generate annual, monthly and 
daily synthetic rainfall and river discharge data. But since most studies 
and planning of water resources systems, including utilization of dam 
reservoirs and climate change issues, etc. are often monthly, the use of 
monthly flow generation models is more than annual and daily models. 
Given the importance of this issue in managing water resources under 
flow uncertainty conditions, several studies have been conducted in 
recent years on time series generation models. One of the earliest 
studies of time series is Hazen's research (Hazen. 1914). Spolita and 
Chander (1974) with the AR model predicted the flow of the Beas River 
by 100 series. The results showed the good performance of the model 
in predicting the river flow. Savic et al. (1989) investigated the Thomas 
Fearing, Fragment, and disaggregation models for synthetic stream 
flow generation in Yugoslavia. Maheepala and Perera (1996) studied 
the synthetic stream flow generation of the single-station and multi-
station systems in Australia using disaggregated models. The results 
showed that the models have retained the statistical parameters of the 
historical data. Prairie et al. (2008) used Markov and KNN chain models 
to predict the Colorado River flow. The simulation results show that the 
proposed models retain the statistical properties of the historical flow 
data. Gualdal and Tongal (2010) investigated stochastic models with 
synthetic neural network models to predict changes in lake water level 
in Turkey. Lohani et al. (2012) compared neural network, 
autoregressive and ANFIS models in modeling and prediction of 
SUTLEG river flow. The results showed that the ANFIS model 
performed better than the other two models. Adeli et al. (2014) used the 
estimated flow of the Talog River to generate synthetic time series of 
inlet flow of the Tallogo Dam reservoir. This study investigated various 
stochastic models including autoregressive (AR), moving average (MA) 
and autoregressive moving average (ARMA) models. The results show 
the superiority of the ARMA (2,3) model over the other models. Dashora 
et al. (2015) modeled the monthly flow of the Narmada River in India 
using the Thomas-Fiering, ANN and SARIMA models. The results of 
this study showed that the performance of the SARIMA model was 
better than the other two models. The Thomas Faring model performs 
better in high-discharge streams and the neural network model in the 
low flow rates. Montaseri and Heidari (2016) compared the 

performance of four types of data generation models of Bootstrap, 
Valencia, Fragment and Thomas-Fiering for synthetic data generation.  

Moeini et al. (2017) predicted monthly flow of Gamishan river with 
ARIMA, ANN and ANFIS models and found that ANFIS model is more 
capable of detecting effective time delays than ANN model but ARIMA 
model has high capability in predicting discharge with low values. Aksoy 
and Dahamsheh (2018) predicted arid regional monthly rainfall in 
Jordan using a combination of neural network and Markov chain 
models. The results showed that the combination of neural network 
model with Markov chain has good performance in predicting monthly 
rainfall in arid regions.  

A review of research shows that one of the most important issues 
in water resources planning and management is the accurate 
estimation of monthly input discharge of the reservoirs in the future 
years, which is always associated with uncertainty. To cover these 
uncertainties, synthetic stream flow data generation models have been 
used by researchers to generate stochastic time series. On the other 
hand, the computational basis of different stochastic models for 
generating monthly data is different and, this can have a significant 
effect on their performance. Therefore, the purpose of this study was to 
select the best model of stochastic monthly flow generation for accurate 
planning and management of the water resource system of the Marun 
river. 

 
2. Material and methods 
2.1. Study area 
 

The Marun river is one of the major tributaries of the Jarahi River in 
southwest of Iran that flows into the Marun dam after a distance of 120 
km. This study used the historical data of Idnak hydrometric station on 
Marun river (prepared by khuzestan water and power authority 
(KWPA)). Considering the role of Marun dam in the supply of 
downstream agricultural water, urban drinking water, supplying a large 
part of the environmental needs of the downstream Shadegan wetland, 
as well as the generation of electricity, predicting long-term inflow time 
series for future planning is very important. The location of the Marun 
Basin and the Idnak hydrometric station have been shown in Fig. 1. 

 

Fig. 1. Location of the study area, rivers and hydrometric stations. 
 

2.2. Synthetic stream-flow generation of the river 
 

In order to manage and decide on water resources systems, it is 
necessary to have basic information on the amount of surface and 
underground flows. If the system is a river, the watering flux rate is an 
important parameter for the management and analysis of surface water 
utilization. Therefore, considering the importance of estimating the flow 
rate especially in the future years and months, it is necessary to use 
appropriate methods of modeling and generation of river flow. 
Prediction values of these models are always associated with 
uncertainties and, the number of different time series with these models 
must inevitably be created in order to cover all uncertainties. Synthetic 
data generation models allow for the generation of alternative 
hydrological data sets that are likely to occur in the future, leading to 
more accurate and realistic results in water resources studies 
(Srikanthan and McMahon. 2001). In modeling the behavior of different 
hydrological systems such as catchments, rivers, etc., as more data is 
available, the mod el is closer to natural conditions and its use in water 
resources issues leads to more accurate results. However, historical 
data on hydrological phenomena usually have a very short statistical 

period of about 20 to 30 years and cannot be an accurate 
representative of a hydrological system with a life span of several 
thousand years (Montaseri and Adeloye. 1999). Synthetic data 
generation models are divided into two main parametric and 
nonparametric groups. In nonparametric models, synthetic data are 
directly generated by re-sampling historical recorded data. But 
parametric models are based on mathematical relationships, which are 
often defined by linear relationships. The classification of the types of 
synthetic data generation models has been shown in Table 1. Due to 
sampling by replacing historical data itself, nonparametric methods 
generate flow data in the minimum and maximum historical data range 
and are unable to generate flows out of this range. These methods are 
incompatible with the expected probability in nature because they 
cannot generate dry and wet flow series outside this range. Therefore, 
they were excluded in this study. Several types of parametric methods 
used in this research will be presented below. Using each of these 
methods, 900 synthetic stream flow time series (30 30-year monthly 
flow series) were generated. 

 
2.2.1. Thomas-Fiering model 
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Thomas and Fiering (1962) presented this model based on the 
Markov chain as the relationship (1). This model is used to generate 
monthly data. 

𝑄𝑖+1 = �̅�𝑗+1 + 𝑏𝑗𝑄𝑖 − �̅�𝑗) + 𝑒𝑖𝑠𝑗+1√1 − 𝑟𝑗
2                                           (1) 

where, 𝑄𝑖 and 𝑄𝑖+1 are the monthly flows generated in the months i and 

i + 1, �̅�𝑗 and �̅�𝑗+1 are the historical average monthly flows in the months 

j, 𝑗 + 1 and bj represents the least squares correlation coefficient for the 
calculation of the month j and 𝑗 + 1, calculated from relationship 2. 

𝑟𝑗 = 𝑏𝑗 [
𝑠𝑗+1

𝑠𝑗
]                                                                                       (2) 

where, 𝑟𝑗  is the correlation coefficient between j and 𝑗 + 1 months, 𝑆j 

and Sj+1 are the standard deviation of the months j and 𝑗 + 1 and 𝑒𝑖 is a 

random variable with standard normal distribution with mean zero and 
standard deviation of one. The above model assumes that the process 
is static in mean and variance. 
 
2.2.2. Autoregressive (AR) model 

 
The Autoregressive model is one of the most common models in 

stochastic discussions and is obtained by regression on historical 
series. The general equation of this model is the relationship 3. 

𝑧𝑡 = ∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + ⋯ ∅𝑝𝑧𝑡−𝑝 + 𝜀𝑡                                                      (3) 

where, 𝑧𝑡  is the flow value per month t and ∅𝑝 , ..., ∅2 , ∅1  are the 

parameters, and P is the order of the model. 𝜀𝑡 is a random variable 
that has a normal distribution with a mean of zero. 
 
2.2.3. Autoregressive- moving average (ARMA (p, q)) model 

 
One of the problems in autoregressive models for modeling 

hydrological time series is the variation of series under specific 
conditions. River flow under dry and wet water conditions follows a 
certain behavior that is not well modeled when using AR models alone. 
For this reason, another section called the moving average (MA) is 
added to the autoregressive model called the autoregressive moving 
average (ARMA) (pq) model (relationship 4). 

𝑧𝑡 = ∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + ⋯ ∅𝑝𝑧𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝑧𝜀𝑡−1 − ⋯ 𝜃𝑞𝑧𝜀𝑡−𝑞                    (4) 

where, ∅𝑝  and 𝜃𝑝  are the parameters of the model, 𝑧𝑡 represents the 

discharge rate at the time t, p and q are the model orders. This series 
of models generates annual data, and fragment, Valencia-Schaake or 
Mejia and Rousselle methods must be used to convert these data into 
monthly flows. 
 
2.2.4. Fragment model 
 

This model presented by Harm and Campbell (1967) is one of the 
disaggregated parametric models in the generation of monthly data. 
Porter and Pink (1991) developed this method and introduced it as the 
Method of Synthetic Fragment. To use this model, we first calculate the 
monthly to annual historical data ratio for the same year. The values 
obtained from this ratio are called Fragment. Then the historical annual 
data is sorted and the fragments of each year are kept in new sorting. 
Next, using a suitable model, new annual data are generated and 

disaggregated based on the fragments available in the months of the 
year. 

 
2.2.5. Valencia-Schaake model 
 

In this method, like the Fragment model, the annual data is first 
generated with a suitable parametric model, and in the next step, the 
annual data is disaggregated in the months of the year. The general 
relationship of this model is as follows. 

𝑄𝑖+1 = �̅� +  𝜌 × (𝑄𝑖 − �̅�) + 𝑣𝑖 × 𝑠 × √1 − 𝜌2                                         (5) 

where, Qi and Qi+1 are annual flows generated at time step i and i + 1, 

Q ̅is average annual observational flows, vi  is random variable from 
standard normal distribution with mean zero and unit variance, ρ is self-
correlation coefficient with delay of one, s  is standard deviation of 
annual observational data. After generation, annual data are 
disaggregated in the months of the year using the relationship 6. 

𝑌𝑣 = 𝐴𝑋𝑣 + 𝐵𝜀𝑣                                                                                      (6) 

Yν is a (12 × 1) vector of monthly data for year ν, εν is a (12 × 1) vector 
of random variables from the standard normal distribution which is 
independent of Xν, Xν is the annual data generated, A and B are the 
coefficients matrix whose dimensions are (12 × 1) and (12 × 12), 
respectively. The values of A and B are obtained using annual and 
monthly historical data.  

 
2.2.6. Mejia and Rousselle model 
 

This model was introduced by (Mejia and Rousselle. 1976) for 
disaggregation of the generated annual data in the months of the year. 
The general equation for this method is as follows. 

𝑌𝑣 = 𝐴𝑋𝑣 + 𝐵𝜀𝑣 + 𝐶𝑌𝑣−1                                                                         (7) 

C denotes the coefficient matrix with the dimensions of (12 × 12) and 
Yν −1  is the monthly data generated in the year ν − 1 . The other 
coefficients and parameters in this method are similar to the Valencia-
Schaake method.  

 
2.3. Data sufficiency test 
 

Hurst coefficient calculation is one of the methods used to assess 
the adequacy of time series for modeling and generation of synthetic 
stream flow. This coefficient is used to measure long-term memory of a 
time series. Long-term memory is defined on the basis of observations 
of extreme events over a given period of time. If the Hurst coefficient for 
a time series is greater than 0.5, the length of the time series is sufficient 
to generation the data (Karamooz and Araghinejad. 2006; Turcotte. 
1997). Otherwise, the length of the time series should be increased by 
different methods. The general relation of this coefficient is as follows.  

ℎ =
log (

𝑅

𝜎
)

log (
𝑁

2
)
                                                                                              (8) 

where, h is the Hurst coefficient, N is the number of data, σ is the 
standard deviation of the data, and R is the difference between the 
maximum positive value and the lowest negative value of the deviation 
from the mean time series calculated cumulatively. 

Table 1. Classification of different types of synthetic data generation models. 

1.1 .Bootstrap 
1.2. Moving window  

1. Nonparametric 
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A. Thomas-fiering 2.1.1. Directly 

2.1 .monthly   

2. Parametric 

A .Proration method 
B. Fragment 
C. Valencia-Schaake 
D. Mejia and Rousselle 

2.1.2. Indirectly 

2.2.1. AR (P) 
2.2.2. ARMA (p,q) 
2.2.3. FGN 
2.2.4. BL 

2.2. annual 

2.3.2. Data normalization method 
 

Most probability theories and statistical methods used in hydrology 
in general and time series analysis have been specifically developed 
with the assumption that their variables have a normal distribution. Most 

hydrologic variables do not follow the normal distribution and must be 
normalized using different methods of data conversion. In this study, 
the normality of flow discharge data at the Adenak hydrometric station 
was investigated as a first step of the modeling steps. Given that the 
historical data did not follow the normal distribution, the Johnson 
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transform method was used to normalize the data. Fig. 2 shows the 
normality test of the historical series of the hydrometric station before 
and after normalization. According to Fig. 2, after applying Johnson 

transform to historical data, they are within the upper and lower limits of 
the normal distribution graph and are normalized to the 95 % 
significance level. 

  
(a) (b) 

Fig. 2. Distribution of historical data (a) before and (b) after normalization. 
 

2.3.3. Assessment of model performance 
 

The evaluation criteria of the models used in this study were the 
mean squared error, squared normalized error and absolute error, as 
well as preserving the statistical properties of historical data (mean, 
standard deviation, coefficient of variation, maximum and minimum 
data) by synthetic time series generation models. The mathematical 
formulas of these criteria have been shown in Eqs. 9 to 12. 

𝑅𝑀𝑆𝐸 = √(∑ (𝑋𝑖
𝑜𝑏𝑠𝑛

𝑖=1 − 𝑋𝑖
𝑠𝑖𝑚)2)/𝑛                                                            (9) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑋𝑖
𝑜𝑏𝑠,𝑚𝑎𝑥

−𝑋𝑖
𝑜𝑏𝑠,𝑚𝑖𝑛                                                                           (10) 

𝑁𝑆𝐸 = 1 − ⌈∑ (𝑋𝑖
𝑜𝑏𝑠𝑛

𝑖=1 − 𝑋𝑖
𝑠𝑖𝑚)2/ ∑ (𝑋𝑖

𝑜𝑏𝑠𝑛
𝑖=1 − 𝑋𝑚𝑒𝑎𝑛)2⌉                               (11) 

RSR =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
= [√∑ (𝑋𝑖

𝑜𝑏𝑠𝑛
𝑖=1 − 𝑋𝑖

𝑠𝑖𝑚)2 /√∑ (𝑋𝑖
𝑜𝑏𝑠𝑛

𝑖=1 − 𝑋𝑚𝑒𝑎𝑛)2]                (12)  

where, Xi
obs is the ith observation for the constituent being evaluated, 

Xi
sim is the ith simulated value for the constituent being evaluated, Xmean 

is the mean of observed data for the constituent being evaluated, and 
n is the total number of observations. 
 
3. Results and discussion 
 

Non-deterministic models of synthetic stream flow generation have 
been developed largely with the assumption that the data are static 
(Salas. 1993). Therefore, the models used in data generation should be 
able to maintain statistically significant parameters of observational 
time series. Therefore, one of the criteria for selecting a superior model 
in generating stochastic time series is that the model retains the 
statistical properties of historical data and also capable of generating 
peak discharges during the wet months and minimum discharges in dry 
conditions. According to the above, the value of the Hurst coefficient 
must be greater than 0.5 for the adequacy of the data series length. The 
value of Hurst coefficient in this study was 0.74, indicating that the data 
are sufficient for generating new series.  A number of evaluation criteria 
were used to compare the performance of synthetic data generation 
models, which will be described below. 
 
3.1. Statistical parameters of monthly flows 
 

As stated, the study used historical monthly flow data of the Idank 
Station during the 30 years (1989–2018). Important statistical 
properties of historical data and data generated by stochastic models 
have been shown in Fig. 3. To generate the monthly data using the 
Fragment model, an appropriate annual data model has been first 
generated and these data has then broken into months. Valencia-
Schaake and Mejia and Rousselle models also provide monthly values 
based on annual data. Therefore, the appropriate model must first be 
selected for generating annual data. Based on the evaluation criteria 
shown in Table 2, the annual ARMA (1,1) model has the lowest error 
values. So, it was obtained as the best model. However, this model 
generated zero discharge during the data generation phase for the 
river, which is unacceptable given the historical data recorded. 

Therefore, this model did not perform well for generating the flow in this 
river. Then, according to Tables 2 and 3, the ARMA (1,2) model has 
better performance than the other models. Also according to Fig. 3, the 
ARMA (1,2) model has been more successful in preserving the 
statistical properties of the historical flow. Valencia-Schaake and Mejia 
and Rousselle models performed very closely together in generating 
monthly data using annual data. Therefore, the Valencia-Schaake 
model was chosen because it was easier to compare with other models 
and the Mejia and Rousselle model were excluded from the 
comparisons. Therefore, outputs of ARMA (1,1) and ARMA (1,2) 
models were disaggregated monthly using Valencia-Schaake method. 
The following is the comparison of the results of the combination of 
these two models with the Valencia-Schaake method with other 
monthly synthetic data generation methods. According to Fig. 3, the 
Thomas-Fiering model in March and April have had higher average 
than the historical data and data generated by other models. Thus, it 
performs poorly in modeling during the wet months. But it has 
acceptable performance than the rest months of the year. Other models 
were able to generate data with average close to the river's historical 
flow, with ARMA (1,1) and ARMA (1,2) models performing better. But 
the ARMA model (1,1) was not suitable for some months due to the 
generation of zero data. According to Fig. 3, the ARMA model (1,1) 
generates maximum discharges near the maximum discharge of 
historical data and is not capable of generating peak values beyond the 
historical values which are not probably acceptable. The Thomas-
Fiering, ARMA (1,2) and Fragment models have been able to generate 
maximum discharges from historical river data during the wet months 
of the year. But the disaggregation of these discharges in the Thomas-
Fiering model is inconsistent with historical data. The Thomas-Fiering 
model has generated more than the minimum river discharge in all 
months of the year in terms of the generated minimum discharges for 
dry years, which is not an acceptable result. But other models have 
been able to model discharges less than historical data and have had 
satisfactory performance. 

Table 2. Evaluation criteria for selecting the best model. 

 ARMA (1,1) ARMA (1,2) AR (1) T.F 

RMSE 3.54 5.2 4.2 16.68 
NRMSE 0.03 0.054 0.047 0.175 

NSE 0.99 0.98 0.98 0.77 
RSR 0.098 0.145 0.117 0.463 

 
3.2. Empirical disaggregation of historical and generated data 
 

Box plot was used to show the empirical disaggregation of historical 
and generated data for Idank station. These diagrams have been 
shown in Fig. 4 to describe the variation range of the historical series 
generated by the models. Accordingly, the ARMA (1,1) and ARMA (1,2) 
models combined with the Valencia-Schaake method have the best 
performance in maintaining the empirical disaggregation of historical 
data. The Fragment model generates minimum flow data less than the 
historical minimum flow values in all months. Therefore, because of the 
lack of coordination of the disaggregation of minimum discharge data 
in this model with the disaggregation of historical minimum discharge 
data, its performance is not appropriate in this regard. Also, the 
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disaggregation of monthly data across all generated statistical years in 
Fragment model is obtained on the basis of available historical records. 
In this method, the monthly disaggregation coefficients are constant 
values based on the categories of generated flows. Therefore, this 
model gives unreal probabilistic values due to the non-deterministic 
monthly disaggregation and therefore it is not suitable for generating 
stochastic data. A review of the Box Plot charts shows that the Thomas-

Fiering model has not been successful in simulating maximum and 
minimum discharges in all months. In this model the values of peak 
flows generated in all months are higher than the historical peak flows, 
which is probabilistically impossible. Also, the minimum generated 
discharges in all months are higher than the historical recorded 
minimum discharges, and this model is not able to simulate drier flows 
compared to historical flow data in these months. 

            (a)      (b) 

          (c)                (d) 

 

                  (e) 
Fig. 3. Diagram of (a) mean, (b) standard deviation, (c) coefficient of variation, (d) maximum and (e) minimum values of historical and 

generated data. 
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3.3. Flow-frequency curves 
 

The flow-frequency curve shows the relationship between 
frequency and discharge rate. Discharge data are used as flow 
continuity curves in the design, management and planning of water 
resources such as design of dams and control structures, power plants 
and climate change topics (Castellarin et al., 2004). In this study, the 
discharge values with probabilities of 0.1, 0.2, 0.5, 0.8, 0.9 and 0.95 
were calculated using data generated in different stochastic models. As 
shown in Fig. 5, most of the models used are able to well model the 
river flow at low probability values (0.1 to 0.5). Calculated discharges 
with these probabilities can be used more for water resources planning 
for synthetic feeding of aquifers and supplying agricultural and public 
consumption. But for higher probabilities (0.9 and 0.95), the Thomas-

Fiering model generates discharge rate up to several times higher than 
historical data and also than other models. Because these discharges 
are related to the low water conditions of the river and are mostly used 
for planning of drinking water supply and industry in low water 
conditions, therefore, estimating of several times of the discharge rates 
more than actual values by Thomas-Fiering model can lead to wrong 
planning and incorrect decision making. In the Fragment model, due to 
the close proximity of the discharge values with probabilities of 0.9 and 
0.95 to the historical values, this model is not able to predict the 
probability of occurrence of dry conditions than the present situation 
and is therefore weak. But in lower probability (0.1 to 0.5) its 
performance is desirable. Given all the probabilities, the ARMA model 
(1,2) has the best performance in estimating the flow-probability values. 
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                  (e) 
Fig. 4. Box plot of monthly flows of (a) historical data and (b, c, d and e) generation data by ARMA (1,1), ARMA (1,2), Fragment and 

Thomas-Fiering models. 
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(e) (f) 

Fig. 5. Flow-Frequency curves of historical and generated data in different probabilities (a) p=0.1, (b) p=0.2, (c) p=0.5, (d) p=0.8,    (e) p=0.9 
and (f) p=0.95. 

4. Conclusions 
 

Monthly stochastic data generation models have great importance 
because of the need to be aware of the status of water resource 
systems in the coming years, including storage tanks, drought 
monitoring, etc., which is always associated with uncertainty. The use 
of data generated by these models allows for a more accurate analysis 
of the actual behavior and performance of such systems, especially in 
drought conditions. The computational basis of different stochastic 
models for generating monthly data has been different and this can 
have a significant effect on their performance. This research compared 
and evaluated the performance of parametric models of synthetic 
stream flow generation including Thomas-Fiering, Fragment and ARMA 
(1,1) and ARMA (1,2) combined with Valencia-Schaake model. Based 
on the obtained results, the ARMA (1,2) model combined with the 
Valencia-Schaake model was recognized as the best model according 
to the optimum performance in preserving the statistical parameters of 
historical data and also the generation of maximum and minimum 
discharges related to wet and dry periods in different probabilities. 
Therefore, this model can be used with greater confidence to analyze 
river systems and reservoirs, manage drought and apply water rationing 
rules in future drought conditions. The design, management and 
operation of water resource systems including storage reservoirs and 
water rationing in drought conditions are particularly affected by 
minimum discharges. Therefore, comparing the range of minimum 
amounts of historical and generated data has a great importance in the 
stochastic analysis of these systems. The ARMA (1,1) model combined 
with the Valencia-Schaake model, despite its ability to simulate 
stochastic time series and retain statistical properties of historical data, 
generates near-zero discharge in some months, which does not 
correspond to river reality and available historical data. The results of 
this study are based on Marun River flow data in southwestern Iran with 
semi-arid climate. Therefore, the use of stochastic data generated by 
the superior model can provide important information for adjusting and 
applying the rationing rules of the Marun Dam reservoir properly under 
water deficit conditions. 
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