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 In this paper, the discharge coefficient of weirs is simulated by the extreme learning 
machine (ELM). To this end, seven different ELM models are introduced by the 
input parameters. Also, the most optimal number of the neurons in the hidden layer 
is computed 7. Furthermore, different activation functions of the ELM model are 
assessed and the sigmoid activation function is taken into account as the most 
optimal one. Besides, the seven defined ELM models are analyzed and the superior 
model is introduced. This model approximates the discharge capacity with better 
performance in comparison with the other ELM models. It should also be noted that 
the superior ELM model is in terms of the dimensionless factors including Fr, HT/P, 
Lc/W, A/w, w/P. For the superior ELM model, the R2, VAF and NSC are respectively 
estimated 0.897, 89.626 and 0.892. Furthermore, the MAE and RMSE statistical 
indices for the ELM model are respectively estimated 0.024 and 0.031. Also, the 
most effective input parameters for modeling the discharge capacity of labyrinth 
weirs using the ELM are detected through the conduction of a sensitivity analysis, 
meaning that the HT/P is identified as the most influenced input parameter. Lastly, 
an applicable equation for computing the discharge capacity of labyrinth weirs is 
suggested which can be used by hydraulic and environmental engineers. 

©2019 Razi University-All rights reserved. 

Keywords: 
Discharge capacity 
Labyrinth weir 
Extreme learning machine 
Sensitivity analysis 
Rectangular open channel 
 

 

 
1. Introduction 
 

Weirs are broadly used in different shapes for adjusting and 
measuring the flow in open channels. Common sharp-edged weirs have 
various shapes such as rectangular, V-notch, trapezoidal, Sutro, 
circular, labyrinth and compound. One of the types of weirs installed 
along the flow is the labyrinth weir which is more effective than 
rectangular weirs. Numerous experimental, theoretical, and analytical 
works have been done on the hydraulic features of flow over the normal 
weirs. However, numerical models are very popular owing to their 
accuracy, functionalty, speed and so on (Azimi et al. 2018; Zeynoddin 
and Bonakdari 2019). 
Moreover, artificial intelligence (AI) models have been recently utilized 
by researchers in various sciences for forecasting and pattern-cognition 
of nonlinear phenomena. For instance, different algorithms of the 
artificial neural network are utilized for solving different problems of 

hydraulics especially calculating the discharge coefficient. Khoshbin et 
al. (2016) managed to provide an optimized hybrid model for simulation 
of the discharge capacity of side weirs through the amalgamation of the 
genetic algorithm (GA), the Adaptive neuro-fuzzy inference system 
(ANFIS), and the singular value decomposition (SVD). Azimi et al. 
(2017a) performed a sensitivity analysis so as to examine the variabels 
affecting the discharge capacity of side weirs placed on trapezoidal 
canals. They ascertained the superior model along with the most 
important input parameter by means of the extreme learning machine 
(ELM). Then, Akhbari et al. (2017) simulated the discharge capacity of 
triangular labyrinth weirs by the M5’ approach. Given the different 
hydraulic and geometric conditions, they put forward some formulae for 
computing the discharge capacity. Azimi et al. (2017b) employed the 
GEP method for simulating the discharge capacity of side weirs within 
trapezoidal flumes in subcritical flow regimes. They proposed a formula 
for estimating the target function. Besides, Roushangar et al. (2017) 
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simulated the discharge capacity of labyrinth weirs using gene 
expression programming (GEP) model and ANFIS network. They 
analyzed the modeling results and demonstrated that the GEP model 
predicted target function with better performance. Also, Azimi and 
Shabanlou (2018) analyzed the discharge capacity of rectangular weirs 
installed on U-shaped channels by the theory of two-dimensional flow. 
They provided some relationships for computing the parameter in 
subcritical and supercritical conditions. Azimi et al. (2019) developed 
six different models using the support vector machine method for 
estimating the discharge coefficient of weirs in a trapezoidal channel 
and introduced the superior model through the conduction of a 
sensitivity analysis. A computational matrix was proposed for estimating 
the discharge coefficient of such hydraulic structures. Salazar and 
Crookston (2019) predicted the hydraulic features and the discharge 
coefficient of arch labyrinth weirs using learning machines such as 
random forests (RF) and neural networks (NN). Then, Bilhan et al. 
(2019) modeled the discharge capacity of labyrinth weirs by the support 
vector regression (SVR) and ELM. It was concluded that the ELM model 
approximates the target function with greater precision. Additionally, the 
effects of the upstream Froude number on flow field was simulated by 
Azimi and shabanlou (2019). The authors investicated the 
characteristics of flow in the vicinity of the side weir. 
Firstly, the discharge capacity of a weir is perhaps the most important 
parameter for presenting an optimal design. The optimal discharge 
coefficient allows the maximum amount of flow to pass through under 
the current hydraulic and geometric conditions. Therefore, the 
identification of the most effective weir design parameters is of 
particular importance. On the other hand, the discharge coefficient of 
weirs has been simulated by various artificial intelligence algorithms 
and many researchers have studied this important parameter. 
The ELM model is a new and robust artificial intelligence which has 
been applied to simulate discharge coefficient (Azimi et al. 2017a). The 
model is quite accurate and versetile to predicte vaarious problems. 
Also, the artificial intelligence (AI) technique is very quick compared 
with other soft computing approaches. According to the literature, there 
is no study about simulating the discharge coefficient of labyrnth weirs 
by using the ELM model. Thus, the discharge coefficient of the weirs is 
simulated through the new artificial intelligence method for the first time. 
To this end, the most influnced factors on the discharge capacity are 
initially identified and seven ELM models are introduced using them. 
The observation values are then divided into two categories: training 
and testing sub-groups. To optimize the ELM models, the best number 
of the neurons within the hidden layer is chosen. Afterthat, five 
membership functions of the ELM approach are evaluated and the best 
membership function is introduced. Subsequently, by performing a 
sensitivity analysis, the superior ELM model and the most important 
input variables are introduced. It should be noted that an applicable 
formula is proposed for estimating the discharge capacity of labyrinth 
weirs by the ELM method which can be used by engineers with the least 
knowledge of matrix computing. 
 
2.  Materials and methods 
 

In the following, firstly, the extreme learning machine (ELM) is 
introduced and then the applied experimental model is presented. Next, 
all factors affecting the discharge coefficient are defined and seven 
ELM models are produced. Finally, the results of simulations are 
presented. 
 
2.1. Extreme learning machine (ELM) 
 

Due to the difficulties of gradient algorithms that require the 
definition of different parameters such as the training speed, the 
iteration criterion and high number of iterations before start training, 
Huang et al. (2004) presented the ELM algorithm that is a single layer 
feed-forward neural network (SLFFNN) to overcome the mentioned 
problems. In this algorithm, the neuron in the hidden layer and input 
weight matrices are determined by random, while the output weight 
matrix is specified during the learning process using the Moore-Penrose 
generalized inverse (MPGI) method. 
Given the N samples as training data in the form of

n m

i i( x , y ) R R ( i 1,2,...,n )   , L number of the neurons in the hidden 

layer and the transfer function f(x), the structure of the SLFFNN model 
is defined as follows (Huang et al., 2004). 

L L

i i j i i i

i 1 i 1

f ( x ) f ( a b x ), j 1,2,...,N 
 

                 (1) 

In this relationship,  
T

i i1 i2 im, ,...,a   is the output weight matrix 

between the nodes in the hidden layer and the output layer, bi is the 

bias of hidden layer neurons and  
T

i i1 i2 ina a ,a ,...,a is the input weight 

matrix linking problem inputs in the input layer to hidden layer neurons. 
The following equation is established by rewriting the above relationship 
in a matrix form (Huang et al., 2004): 

L

i i j

i 1

f ( x ) H 


                                (2) 

where, f(x) is the activation function and a matrix of the output weight 
(β), the output matrix of the hidden layer (H) and the matrix of estimated 
values (T) are defined as follows (Huang et al., 2004). 

T

1

T

L L m








 
 

  
 
 

               (3) 

1 1 1 L 1 L

1 N 1 L N L

f ( a x b ) f ( a x b )

H

f ( a x b ) f ( a x b )

    
 

  
     

             (4) 

T

1

T

L N m

y

T

y


 
 

  
 
 

               (5) 

In the ELM method, the matrix of input weights (α) and the bias of 
hidden layer neurons (b) are initialized. After the determination of these 
two values, the hidden layer output matrix is determined through the 
learning process of ELM. In fact, the learning process of SLFFNN using 
the ELM algorithm leads to solve a least square issue so that its 
objective function is obtained using the regularization theory as follows 
(Huang et al., 2004). 

2 2

ELM

1 c
min L T H

2 2
                  (6) 

The solution of the above problem as a least square problem is as 
follows. 

TV cH (T H ) 0                 (7) 

If the number of training data is higher than the number of hidden layer 
nodes then the output weight matrix (β) is obtained as Eq. 8, otherwise 
Eq. 9 is used (Huang et al., 2004). 

1

T T1
H H H

c




 
  
 

             (8) 

1

T T1
H HH T

c




 
  

 
             (9) 

 
2.2. Experimental apparatus 
 

In this paper, the experimental model established by Seamons 
(2014) is utilized for verifying the results from the AI approache. In the 
mentioned laboratory study, the measurements were carried out within 
a rectangular flume with the length 14.6m, width 1.2m and height 0.9m. 
The flume slope in all tests is equal to zero and the channel is 
horizontal. Seamons (2014) measured the experimental values for two 
modes including normal orientation labyrinth weirs (NLWs) and inverted 
orientation labyrinth weirs (ILWs). Through the experimental 

investigation, he measured the flow rate  Q , the total head above the 

weir crest (HT), height of the weir crest  P , cycle sidewall angles   , 

length of the weir crest  cL , the width of the labyrinth weir  W , length 

of apex geometry  A  and width of a single cycle  w . The layout of the 

experimental model provided by Seamons (2014) is illustrated in Fig. 1. 
 
2.3. Discharge coefficient of labyrinth weir 
 

The discharge coefficient of a weir is presented as follows 
(Seamons. 2014). 
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d 3 2

c T

3 Q
C

2 2gL H
          (10) 

Besides, the discharge capacity of labyrinth weirs is considered in 
terms of the following parameters (Seamons. 2014). 

 d T cC f Fr,H P, ,L W,A w,w P           (11) 

Thus, in the current study, the dimensionless factors of Equation11 
are applied for calculating the discharge capacity by the artificial 
intelligence model. The amalgamation of the input factors for 
developing the ELM models are depicted in Fig. 2.  

 

Fig. 1. Layout of Seamons' (2014) model. 

 

Fig. 2. Amalgamation of input factors for developing AI models. 
 
2.4. Goodness of fit 
 

To examine the performance of the AI models, the correlation 
coefficient (R), variance accounted for (VAF), Scatter Index (SI), Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE) and Nash-
Sutcliff efficiency Coefficient (NSC) are utilized as follows (Azimi et al. 
2017b). 

  

   

n

i ii 1

2 2n n

i ii 1 i 1

F F O O
R

F F O O



 

 


 



 
           (12) 

 
 

var
VAF 1 100

var

i i

i

F O

F

 
    
 

                           (13)   

  

 
n 2

i ii 1

1
RMSE F O

n 
             (14) 

RMSE
SI

O
             (15) 

n

i i

i 1

1
MAE F O

n 

              (16) 

 

 

n
2

i i

i 1

n 2

i

i 1

O F

NSC 1

O O







 






           (17) 

where, the Fi and Oi are simulated and observed values. Also, the 

OF ,  are the averaged of simulated and observed values and the n is 

the number of experiment. The closeness of the RMSE, MAE and SI to 
zero indicates the high accuracy of the ELM models. The closeness of 
the R and NSC indices to one show high correlation of the numerical 
model with experimental measurements. In general, the superior model 
has a larger VAF than other numerical models. 
 

3. Results and discussion 
3.1. Neurons in hidden layer 
  

In this section, the number of the neurons in hidden layer of the 
ELM method is investigated. In Fig. 3, the variations of various 
statistical indices versus the number of neurons within the hidden layer 
are plotted. As seen, by increasing the values, the accuracy of the 
numerical model increases significantly. The initial number of the 
neurons starts from 1 and continues to 20. The most optimal number of 
the hidden layer neuron is considered equal to 7. For example, when 
the number of neurons is one, the NSC, VAF and RMSE are obtained 
36374.600, 0.156 and 0.097, respectively. In contrast, R2, RMSE and 
SI for this number of neurons are yielded 0.873, 0.034 and 0.066, 
respectively. Additionally, in the case that the number neurons are 7, 
the NSC, MAE and VAF values are calculated 0.856, 0.026 and 87.382, 
respectively. Thus, the optimized number of the neurons is considered 
7. In Fig. 4, the comparison of the simulated target function by the 
artificial intelligence model with 7 hidden layer neurons along with the 
scatter plot is shown. As shown, the accuracy of the numerical model 
in this case is acceptable. It should be noted that by increasing the 
hidden layer neurons the computational time increases and finding 
hidden layer neurons is very important in terms of modeling accuracy 
and computational time. 
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Fig. 3. Changes of different statistical indices versus number of neurons in hidden layer. 

 

 
Fig. 4. Comparison of observational and simulated discharge coefficients along with scatter plot for NHL=7. 

 

3.2. Activation function 
 

In the part, the optimal activation function in simulating the 
discharge capacity of labyrinth weirs is evaluated. As discussed above, 
ELM owns five activation functions consist of sigmoid, sin, hardlimit, 
Tribas and Radbas. Furthermore, the results of various statistical 
indices for all activation functions of ELM are listed in Fig. 5. In Figure 
6, the comparison of the simulated and observed discharge coefficients 
along with the corresponding scatter plots for different activation 
functions are plotted. For sigmoid, the values of the determination 
coefficient and the scatter index are obtained 0.874 and 0.066, 
respectively. Furthermore, VAF, RMSE and MARE for this activation 
function are calculated 87.382, 0.034 and 0.026, respectively. In 
contrast, R2 and RMSE for the sin activation function are estimated to 
be 0.802 and 0.044, respectively. However, MAE for sin is 
approximated equal to 0.031. Moreover, for the hardlimit activation 
function, the SI, MAE and R2 statistical indices are calculated 0.175, 

0.077 and 0.117, respectively. In addition, NSC and VAF for this 
activation function are respectively estimated -17.612 and 10.243. 
Among all activation functions, hardlimit owns the lowest correlation 
with the laboratory values. Also, the determination coefficient and the 
scatter index for the Radbas activation function are 0.161 and 0.592, 
respectively. Based on the simulation results, the MAE, VAF and RMSE 
for the Radbas activation function are 0.241, -598.120 and 0.310, 
respectively. Among all activation functions of the ELM mode, the 
Radbas function has the maximum error. Also, the RMSE, MAE and R2 
statistical indices for the Tribas activation function are obtained 0.088, 
0.068 and 0.398, respectively. It is worth mentioning that SI, NSC and 
VAF for Tribas are computed 0.168, 0.299 and 17.737, respectively. 
According to the examination of the ELM activation functions, sig owns 
the highest correlation with the observed values. In the following, this 
activation function is applied for simulation of the discharge capacity of 
labyrinth weirs. 
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Fig. 5. Results of statistical indices for different activation functions. 
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Fig. 6. Comparison of simulated and observed discharge coefficients along with scatter plots for different activation 

functions. 
 
3.3. Sensitivity analysis 
 

The results of the ELM1 to ELM7 models are evaluated through the 
conduction of a sensitivity analysis. The comparison of all statistical 
indices is illustrated in Figure 7. In addition, the comparison of the 
observed and simulated discharge coefficients along with the 
corresponding scatter plots is illustrated in Figure 8. The ELM 1 model 
estimates the discharge capacity using a combination of all input 

parameters  T cFr,H P, ,L W,A w,w P . As one of the ELM models, 

ELM 1 owns the best performance and the lowermost error value. For 
instance, the values of SI, RMSE and NSC for the ELM1 model are 
estimated 0.066, 0.034 and 0.856, respectively. Also, the MAE and VAF 
for the model are respectively calculated 0.026 and 87.382. In the 
following, the models by means of five input factors are studied. In other 
words, the ELM2 to ELM7 models approximate the objective function in 
terms of five input factor. For example, ELM 2 estimates the discharge 

capacity using 
T cFr,H P, ,L W,A w and the effects of the 

dimensionless factors w P  are eliminated for the model. Moreover, the 

RMSE, MAE and NSC for this model are respectively obtained 0.035, 
0.027 and 0.858. Besides, VAF and SI for this model are estimated 
87.299 and 0.066, respectively. Then, the ELM 3 model is evaluated. 
This model forecasts the discharge capacity by means of

T cFr,H P, ,L W,w P . In other words, the impact of the factor wA  is 

removed for the model. For the model, the NSC, SI and MAE are 
respectively computed 0.840, 0.071 and 0.027. Furthermore, the values 
of RMSE and VAF for ELM3 are computed 0.037 and 85.358, 
respectively. Subsequently, the results of the ELM4 model are 
examined. This model is as a function of the dimensionless factors

TFr,H P, ,A w,w P . For estimating the discharge coefficient by this 

model, the effects of 
cL W are removed. For the model, the MAE and 

SI are yielded 0.022 and 0.061, in turn. Furthermore, MAE and RMSE 
for ELM 4 are respectively calculated 0.022 and 0.032. Among all 
artificial intelligence models with five input parameters, the ELM5 model 
simulates the discharge capacity with better performance compared 
with the other AI models. This model is a function of 

T cFr,H P,L W,A w,w P . The impact of the factor 𝛼 is eliminated for 

this model. Additionally, NSC and SI for ELM 5 are calculated 0.892 
and 0.060, respectively. It is worth mentioning that MAE, VAF and 
RMSE for this model are obtained 0.024, 86.626 and 0.031, in turn. 
Regarding to the simulation results, ELM 6 owns the lowest correlation 
with the observed values among all artificial intelligence models. To 
estimate the discharge capacity of labyrinth weirs by this model, the 

influences of the parameters 
cFr, ,L W,A w,w P

 
are taken into 

account. It should be mentioned that the impact of the parameter 
TH P

 
is removed. For ELM6, the SI and RMSE are surmised 0.076 and 0.040, 
in turn. Besides, VAF, MAE and NSC for this model are computed 
83.195, 0.029 and 0.808, respectively. It should be noted that the ELM 
6 model owns the bottommost error amongst the ELM models. ELM 7 
model approximated the objective function data in terms of the 

dimensionless parameters 
T cH P, ,L W,A w,w P . For the model, the 

impact of the Froude number  Fr is removed. For the model, the 

RMSE and MAE are computed 0.036 and 0.029, in turn. Furthermore, 
the VAF, SI and NSC statistical indices are calculated 86.113, 0.069 
and 0.846, respectively.  
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Fig. 7. Results of statistical indices for different ELM models. 
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Fig. 8. Comparison of simulated and observed discharge coefficients with corresponding scatter plots for different ELM models. 

Additionally, the comparison of the simulated and observed discharge 
coefficients along with the corresponding scatter plots for the ELM 
models are shown in Figure8. Regarding to the sensitivity analysis 
results, the ELM 5 model is presented as the best AI model in estimating 
the discharge capacity of labyrinth weirs. This model simulated the 
target function by using the dimensionless parameters  

T cFr,H P,L W,A w,w P . Furthermore, the ELM6 and ELM3 model the 

lowest accuracy and correlation, respectively. It should also be noted 
that regarding to the sensitivity analysis results, the dimensionless 
factors 𝐻𝑇/𝑃  and A/W are identified as the most important input 
parameters in simulating the discharge coefficient. 
Superior model: In this section, for the ELM 5 model which is a function 

of the dimensionless parameters
T cFr,H P,L W,A w,w P , a formula is 

presented for estimating the discharge capacity of the weirs. The 
general expression of the proposed equation is as follows.  

 
  

T

s

t

h 1
OutW

h 1 exp InW InV BHN

 
  

    

           (18) 

where, InW, InV, BHN and OutW are the matrix of input weight, input 
weights, input variables, the bias of hidden layer neurons and output 
weights, respectively. Values of each matrix is presented as the 
following relationships. 

T

c

Fr

H P

InV= L W

A w

w P

 
 
 
 
 
 
 
 

             (19) 

0.303 0.743 -0.689 -0.343 0.360

0.409 -0.440 0.683 0.991 -0.257

0.562 -0.533 -0.520 -0.010 0.575

InW 0.618 -0.477 0.598 -0.075 -0.895

-0.430 0.146 0.017 0.0855 -0.778

0.290 0.874 0.951 0.968 0.493

0.227 0.877 0.811 -0.321 -0.354

















 
 
 
 
 



          (20) 

0.488

0.083

0.400

BHN 0.172

0.323

0.387

0.770

 
 
 
 
 

  
 
 
 
 
 

             (21) 

-1.916

-1.173

1.841

OutW -1.121

1.785

0.539
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4. Conclusions 
 

In this paper, the discharge capacity of labyrinth side weirs placed 
in rectangular channels was simulated using a new artificial intelligence 
(AI) method called “Extreme Learning Machine (ELM)”. Initially, the 
parameters influencing the discharge coefficient of labyrinth weirs were 
detected. Then seven distinctive ELM models were developed using 
the effective parameters. It is worth mentioning that 70% of the 
experimental data were used for training the models, while the 
remaining 30% were employed to test them. All parts of the ELM model 
including the number neurons in the hidden layer and the activation 
function were optimized. In other words, the most optimal number 
neurons in the hidden layer of the ELM model was considered equal to 
7. The RMSE, MAE and SI for the neurons were equal to 0.034, 0.026 
and 0.066, respectively. Moreover, five activation functions of the ELM 
model were examined and the sig function was finally chosen as the 
best one. The values of R2, RMSE and VAF for this activation function 
were approximated 0.873, 0.034 and 87.382, respectively. After that, 
the results of all ELM models were investigated and the best model was 
presented through the conduction of a sensitivity analysis. This model 
simulated the discharge capacity with reasonable performance. For 
instance, the NSC, VAF and R2 for the superior ELM model were 
computed 0.892, 89.626 and 0.897, respectively. Besides, the 
sensitivity analysis results demonstrated that the dimensionless 

parameters 
TH P

 
and A w  are the most important input factors in 

predicting the discharge coefficient through the ELM method. Finally, 
an applicable matrix was presented for estimating the discharge 
capacity of labyrinth weirs using the superior ELM model. This formula 
can be easily used by engineers and researchers with the least 
knowledge of matrix computations. This matrix can be used in 
applicable problems without prior knowledge of artificial intelligence. 
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