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 Flow through open channels can contain solids. The deposition of solids 
occasionally occurs due to insufficient flow velocity to transfer the solid particles, 
causing many problems with transfer systems. Therefore, a method to determine 
the limiting velocity (i.e. Fr) is required. In this paper, three alternative, hybrid 
evolutionary algorithm methods, including differential evolution (DE), genetic 
algorithm (GA) and particle swarm optimization (PSO) based on the adaptive 
network-based fuzzy inference system are presented: ANFIS-GA, ANFIS-DE and 
ANFIS-PSO. In these methods, evolutionary algorithms optimize the membership 
functions, and ANFIS adjusts the premises and consequent parameters to 
optimize prediction performance. The performance of the proposed methods is 
compared with that of the general ANFIS using three different datasets 
comprising a wide range of data. The results show that the hybrid models (ANFIS-
GA, ANFIS-DE and ANFIS-PSO) are more accurate than general ANFIS in 
training with a hybrid algorithm (hybrid of back propagation and least squares). 
Among the evolutionary algorithms, ANFIS-PSO performed the best (R2=0.976, 
RMSE=0.26, MARE=0.057, BIAS=-0.004 and SI=0.059). 

©2017 Razi University-All rights reserved. 
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1. Introduction 

 
Solid particles that deposit in entry flow through open channel 

systems can eventually become consolidated or cemented, especially 
during dry weather flow (DWF). In DWF, the lowest discharge passes 
through the channel. The flow velocity is below the minimum velocity 
required to sediment transport without deposition (limiting velocity), 
causing solid deposits on the channel bottom. Solid deposition on the 
channel bottom besides increasing bed roughness cause reduced 
cross-sectional area. Consequent to material deposition due to 
changes in velocity and shear stress distribution, reduced 
transmission capacity is expected. 

Conventional methods of determining the limiting velocity employ 
constant velocity or shear stress by applying practical engineering 
experience obtained from project to project. Constant velocity and 
shear stress were presented comprehensively by Vongvisessomjai et 
al. (2010). These methods do not consider sediment and flow 
characteristics, therefore the limiting velocity, which is often presented 
as underestimated or overestimated, leads to sediment deposits or 
uneconomical plans, respectively (Bonakdari and Ebtehaj 2014a; 
Safarzadeh and Mohajeri 2016). Hence, many experimental and 
analytical studies have been conducted to investigate the factors 
influencing limiting velocity estimation (Nalluri and Ab Ghani 1996; Ota 
and Nalluri 2003; Banasiak 2008; Vongvisessomjai et al. 2010; 
Bonakdari and Ebtehaj 2014b) and several regression-based 
equations have been recommended. Since understanding the 
mechanism of sediment transport in open channels due to its complex 
three-dimensional nature is difficult, existing equations cannot provide 
precise estimates of limiting velocity (Ebtehaj et al. 2014). Soft 
Computing (SC) performs well in different engineering fields, such as 

Multi-reservoir real-time operation rules (Akbari-Alashti et al. 2014); 
sediment transport in sewer systems (Ebtehaj and Bonakdari 2013; 
2016a); wastewater treatment (Amiri et al. 2015); Scour depth (Khan 
and Azamathulla 2012; Najafzadeh et al. 2014); side weir discharge 
capacity (Parsaie and Haghiabi 2014; Ebtehaj et al. 2015); and 
longitudinal velocity field (Zaji and Bonakdari 2015). Fuzzy systems 
are one of the most widely applied methods that yield good prediction 
results. Azamathulla et al. (2012) predicted sediment transport in 
clean sewers using adaptive neuro fuzzy inference systems (ANFIS). 
The authors compared the results of ANFIS with a non-linear 
regression (NLR) equation and found that ANFIS is more accurate 
than NLR. Reservoir water level was estimated using ANFIS by 
Valizadeh and El-Shafie (2013). To improve the ANFIS ability, they 
used a certain membership function for each input parameter. A 
performance evaluation of the developed ANFIS indicated its higher 
accuracy over general ANFIS. Akrami et al. (2014) predicted rainfall 
using ANFIS. To eliminate prediction error due to noisy data, the 
authors combined a wavelet transform with ANFIS (Wavelet-ANFIS). 
The results showed that Wavelet-ANFIS performed better than ANFIS. 

Combining evolutionary algorithms with other SC methods in 
engineering problems leads to increased accuracy. Kisi (2010) 
modeled suspended sediment concentration by combining differential 
evolution (DE) and artificial neural networks (ANN). A comparison of 
ANN-DE with general ANN and ANFIS showed the superior 
performance of ANN-DE in forecasting suspended sediment 
concentration. Afshar et al. (2013) evaluated the performance of multi-
objective particle swarm optimization (MOPSO) in automatic 
calibration of water quality and hydrodynamic parameters. The results 
indicated that MOPSO provides a wide range of all potential 
calibration solutions for better decision-making. Tayfur et al. (2013) 
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surveyed sediment load prediction by a hybrid genetic algorithm and 
artificial neural network (ANN-GA) method. They found that ANN-GA 
is able to predict total sediment load with good accuracy. Sahay and 
Srivastava (2014) forecasted monsoon floods in rivers using a 
combination of GA, ANN and wavelet transform. To process the time 
series and optimize ANN’s initial parameter, they used a wavelet 
transform and GA, respectively. 

Ebtehaj and Bonakdari (2014a) evaluated the performance of 
ANFIS in forecasting sediment transport. The authors suggested the 
application of evolutionary algorithms rather than back propagation 
and hybrid algorithms, and compared them. Thus, in this paper, the 
performance of evolutionary algorithms, i.e. differential evolution (DE), 
genetic algorithm (GA) and particle swarm optimization (PSO) based 
on ANFIS (ANFIS-DE, ANFIS-GA and ANFIS-PSO) in predicting 
sediment transport in pipe channels using three datasets is surveyed. 
using dimensional analysis, the effective parameters on limiting 
velocity (Fr) prediction are placed in 5 groups and 6 proposed models. 
As a result, the performance of all models is evaluated using ANFIS, 
ANFIS-DE, ANFIS-GA and ANFIS-PSO. 

 
2. The concept of ANFIS 
2.1. ANFIS structure 

 
In this paper, in order to predict the limiting velocity to prevent 

sediment deposition on the channel bed, a neuro fuzzy system is 
used. The neuro fuzzy system is a modeling framework in the form of 
a hybrid artificial neural network (ANN) and fuzz logic (FL). The hybrid 
model is presented to overcome the limitations in both FL and ANN 
methods. In fact, inspired by fuzzy systems, basic knowledge in a 
collection of constraints showed a reduction in the optimization search 
space. Meanwhile, a structured network is inspired by ANN back 
propagation. In this method, ANN tunes the membership functions 
(MFs) (Singh et al. 2012). There are also non-linear membership 
functions in the neuro fuzzy method, which lead to notable reduction 
in the implementation cost of a simple design based on rules and 
memory consumption. Thus, it is clear that a hybrid of neural networks 
and fuzzy systems reduces the limitations of each of two methods, 
hence a data mining technique is proposed to solve complex 
engineering problems. Adaptive neuro fuzzy inference system 
(ANFIS) is one of the known methods of simultaneously combining 
neural networks and fuzzy systems. This method is used to identify 
the performance of nonlinear systems with input and output datasets 
defined for the model. ANFIS is a structured, fuzzy inference system 
(FIS) model. Two of the most prominent FIS used in ANFIS are 
Mamdani (Mamdani and Assilan 1975) and Takagi-Sugeno-Kang 
(TSK) (Takagi and Sugeno 1985; Jang 1992). TSK is simpler because 
there is less need for rules and it uses known training methods like 
back propagation. Two of the algorithms by default in ANFIS training 
are back propagation and hybrid (hybrid of back propagation and least 
squares). 

A schematic ANFIS structure for a network with two inputs (x, y) 
and one output (f) is presented in Fig. 1. The considered rules with 
two IF-THEN rules for FIS of TSK-type can be expressed as follows: 

 

Rule 1 

1111

11

ryqxpfThen

,Bisyand,AisxIF


                                                  (1) 

Rule 2 

2222

22

ryqxpfThen

Bisyand,AisxIF


                                                  (2) 

 

 

Fig. 1. ANFIS architecture for 2 inputs and 1 output. 

The number of nodes in the first layer with the use of entire nodes 
and the number of membership functions (n) for each input is 
determined. However, the number of nodes in other layers (layers 2 to 
4) depends on the rule (R) in each fuzzy rule base. The ANFIS layer 
structure is as follows: 

The first layer (fuzification layer): The Xi input comprising the 
membership degree label of fuzzy set Aij, shows the membership 
degree of each fuzzy collection. The node function of this layer can be 
expressed as follows: 

 

n1,2,...,jinputs,ofnumber1,2,...,i)(XμO iij
1
ij                         (3) 

 
where μij is the jth MF for the Xi input and Oij

1 is the output of node ij. 
Due to the satisfactory performance of Gaussian membership 
functions in various engineering applications (Zanganeh et al. 2009; 
Güneri et al. 2011; Abdi et al. 2012; Karasakal et al. 2013; Bosque et 
al. 2014; Premkumar and Manikandan 2015), the membership 
function used in this study is a Gaussian-shaped MF. This function 
has smoothness and concise notation as well. The Gaussian MF 
mathematical relationship is as follows: 
 

2

b

aX
expμ(X) 







 
                                                                           (4) 

 
where a and b are the parameter set. 

The second layer (produce layer): the nodes in this layer (k), 
which are provided as circular nodes (П), generate output using the 
received input. 

 

1,2,...ne1...e2R1,2,...,k

)(X)...μ(X)μ(XμWO kek2e21e1k
2
k





                                                   (5) 

 
The third layer (normalized layer): in this layer, the kth node 

determines the relative firing strength of the kth rule to the firing 
strengths of all rules as follows: 

 

R1,2,...,k
W...WW

W
WO

R21

k
k

3
k 


                                          (6) 

 
The fourth layer (de-fuzzification layer): Each node in this layer is 

an FIS weighted output performed as follows: 
 

kk
4
k fWO                                                                                             (7) 

 
where Wk and fk are the output layer of de-fuzzification and kth TSK-
FIS, respectively. The m TSK-FIS number rules are as follows: 
 





m

1i

keiik rpf                                                                                    (8) 

 
where

 
pi,ei and rk comprise the parameter set. The parameters of this 

layer are referred to as consequent parameters. 
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where Y represents all network outputs. To evaluate ANFIS 
performance, mean squared error (MSE) indicators are used, which 
are calculated as follows: 
 





n

1i

2
PredictedActual )Fr(Fr

n

1
MSE                                                       (10) 

 
where n is the pattern number, FrActual is the observed Fr in the 
experimental tests and FrPredicted is the Fr predicted by ANFIS. 

Fig. 2 shows a flowchart of ANFIS. Firstly, the datasets are 
classified into two parts: training and testing. In this study, 70% and 
30% of data were used for training and testing of the model, 
respectively. FIS generation is done following categorization. There 
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are two methods, namely grid partitioning and subtractive clustering to 
carry out FIS generation. In this study, grid partitioning (Ebtehaj and 
Bonakdari 2014a) is used owing to better performance. At this stage, 
the numbers and types of input and output MFs should be determined. 
In this study, the Gaussian membership function (Eq. 4) is used as an 
MF. The number of MFs is determined by trial and error and 
considered equal to 3. The training network algorithm should be 
determined following FIS generation. For ANFIS training, back 
propagation and hybrid (back propagation algorithm with least 
squares) are normally used (Sobhani et al. 2010; Bilgehan 2011; 

Behera and Guruprasad 2012). Ebtehaj and Bonakdari (2014a) 
indicated that hybrid algorithm performance is better than back 
propagation. Therefore, in this study the performance of a hybrid 
algorithm is compared with evolutionary algorithms, namely genetic 
algorithm (GA), Particle Swarm Optimization (PSO) and Differential 
Evolution (DE), as suggested by researchers for future studies. After 
training ANFIS, the prediction accuracy is assessed using test 
datasets and if satisfactory results are achieved, the modeling process 
ends; otherwise the FIS generation process is repeated to reach an 
acceptable solution. 

 
 

Fig. 2. General ANFIS flowchart. 
 

2.2. Learning algorithms 
2.2.1. Genetic Algorithm (GA) 

 
Genetic algorithm (GA) is a stochastic optimization method that 

has performed successfully for various engineering issues. GA is 
capable of solving problems that gradient-based methods cannot 
solve well, such as nonlinear, stochastic and non-differentiable 
problems (Ocak. 2013). In conventional optimization approaches, in 
order to achieve the optimum solution, every point is generated using 
deterministic computations in each iteration and sequence of point 
approaches. In GA, the points of a population for each iteration are 
generated randomly and the best population point has a desire to the 
optimum solution that is similar to the final result (Goldberg 1989; 
Melanie 1996). 

One of the most important steps in using GA to investigate an 
optimization problem is to provide an optimized potential solution to 
the problem as an individual or gene sequence known as 
chromosomes. The most common way of encoding problems as 
binary strings is to use zero and one strings. The basic steps in a 
genetic algorithm are presented in Fig. 3. 

GA includes three essential components. The first part concerns 
creating an initial population using the mth individual that was 
randomly selected. The initial population produces the first generation. 
The second part consists of entering the mth individual and generating 

the output; evaluating each is based on the objective function known 
as a fitness function (Fig. 3). The evaluation determines the demands 
expected of each individual in order to achieve the ultimate goal. 
Finally, the third component is responsible for the new generation. A 
new generation is created based on the fittest individual from the 
previous generation. 

Evaluating the process of producing generation N and generation 
N + 1 based on the N generation continues until the desired function is 
achieved. Offspring generation, which is based on the fittest individual 
related to the previous generation, is known as breeding. The 
breeding process consists of three basic steps in GA: reproduction, 
crossover and mutation. 

Reproduction is done by two genetic operators, namely crossover 
and mutation. Crossover is a process in which the parent's genes 
change, but mutation is where genes randomly modify in the parent 
chromosome. Both of these operations have significant impact on the 
search space and a lack of appropriate values may not provide good 
results. Crossover and mutation represent searching the new solution 
area and the behavior of a random jump into unknown areas in the 
search space, respectively (Holland 1992). The genetic evolution 
algorithm process for different generations continues until a 
termination condition is fulfilled. The best gene call is decoded in the 
last generation in order to achieve the desired, optimum solution to 
the problem. 

 

 
 

Fig. 3. GA flowchart 
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2.2.2. Particle Swarm Optimization (PSO) 
 
Particle Swarm Optimization (PSO) is a smart method group 

(swarm) presented by Eberhart and Kennedy (1995). It is inspired by 
the social behavior of birds and fish. PSO is a population-base search 
method, in which every particle could be a candidate for the optimum 
solution. Particles change their positions in a multi-dimensional search 
space to achieve an optimal condition or limited circumstance 
calculation. 

Empirical observations show good performance in the optimization 
methods field (Naka et al. 2002; Mendes et al. 2004; Yu and Li 2004). 
Thus, this method has been widely used in engineering optimization 
problems (Eberhart and Hu 1999; Yoshida et al. 2000; Ciuprina et al. 
2002; Ratnaweera et al. 2004; Heo et al. 2006; Del Valle et al. 2008; 
Pedersen and Chipperfield 2010; Mousa et al. 2012; Ebtehaj and 
Bonakdari 2016b). A PSO algorithm flowchart is presented in Fig. 4. 
The first step is to determine the initial particle swarm, P(k), so that the 

xis(k) position of each particle (Pi  P (k)) in hyperspace is equal to k = 
0. The second stage is to evaluate the F function performance for 
each particle using the particle position (xi(k)). 

 












(k)xx

(k))F(xpbest
thenpbest(k))F(xif

iipbest

ii

ii                                (11) 

 
In the third stage, the best particle performance of each individual 

is evaluated as follows: 
 












(k)xx

(k))F(xgbest
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iigbest

ii
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In the fourth stage, for each individual, the velocity vector is 

changed using the following equation: 
 

(k))x(xCr(k))x(xCr1)(kwv(k)v iigbest22iipbest11ii                      (13) 

 
where r and C are random parameters. The r1 and r2 parameters are 
in the range of (0, 1) while C1 and C2 are positive constant values. 
Ebtehaj and Bonakdari (2016b) concluded that the best result is 
achieved when the sum of these two parameters is not more than 4 

4)C+(C 21  .  

The w parameter is known as the weight parameter in the above 
equation. Careful selection of these parameters leads to a balance 
between local and global swarm performance, which reduces the 
iteration number. The value of the w parameter using the equation 
proposed by Shi and Eberhart (1998, 1999) is calculated as follows: 

 

.iter
iter

ww
ww

max

minmax
max


                                                               (14) 

 
where wmin and wmax are the initial and final weights, respectively. 

Also, itrmax is the maximum iteration value and itr is the iteration 
number. 

In the fifth step, every particle transforms to its new location using 
the following equation: 

 

(k)v1)(kx(k)x iii                                                                         (15) 

 
2.2.3. Differential Optimization (DE) 

 
Differential Evolution (DE) belongs to evolutionary algorithm 

ancestors presented by Storn and Price (1997). DE is a random 
population-based algorithm. The difference between this method and 
other evolutionary algorithms is the use of differential mutation. In a 
desired solving population with n-dimensional space, fixed vector 
numbers are created randomly. To understand the different search 
spaces and reach the minimum objective function, evolution over time 
is needed. 

A mutation function in DE (F: Iμ → Iμ) consists of producing a 
mutated vector (μ) using the following equation: 

 

μ1,2,...,i)aaF(av r3r2r1i 


                                                    (16) 

where r1, r2, r3  [1, 2,... μ] are selected randomly. These parameters 

differ from each other and index i. F  [0 2] is a constant parameter 
affecting the differential variation between two vectors. Larger F or 
population size (μ) quantities tend to increase the capacity of the 
global search algorithm because a new area is known to the search 
space. 

The crossover operator in DE (CR: Iμ → Iμ) mutates the vectors

])v,...,v,v[v( diiii


21 with a target function ])a,...,a,a[a( diiii


21  (an 

answer to the previous population parent) to produce a trial vector 

combination ])a,...,a,a[a( diiii



21
 using the following equation: 

 











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μ1,2,...,irnbr(i)jandCR)(randb(j)ifa

d1,2,...,jrnbr(i)jorCR)(randb(j)ifv
a

ji

ji

ji
               (17) 

 

where randb(j)  [0 1] is the jth assessment of a uniform random 

generator and rnbr(i)1,2,…,d is the random selection index. CR [0 
1] is the crossover parameter that increases the variety of individuals 
in populations. Larger CR values cause increased child vectors (ai

’) 
similar to mutated vectors (vi

’). Thus, the algorithm convergence 
speed is increased. According to Eq. 17, each objective function has a 
target function rule. If CR is considered zero, vectors of parents and 
children differ from at least one variable (Eq. 17). 

The selection operator in DE (s: Iμ → Iμ) selects the best costly 
target function (ai

’) and associated trial vector (ai
’) as a part of the 

population for the next generation. 
 

(g))a1))(ga1))(gaelse

(g))a1))(gathen(g)),aΦ((g))aΦ(If

iii

iiii









                     (18) 

 
where g is the current generation. The DE flowchart with the main 
operators is presented in Fig. 5. 

 

 
 

Fig. 4. PSO flowchart. 
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3. Methodology 
 
To determine the minimum velocity required to avoid sediment 

deposition in open channels (limiting velocity), factors affecting flow 
velocity should be determined first. Experimental studies in the field of 
sediment transport with non-deposition condition consider parameters 
such as flow depth, volumetric sediment concentration, particle size 
and pipe diameter as effective parameters in determining the limiting 
velocity. Since each of the parameters includes different dimensions, 
the dimensionless parameters are used to determine the limiting 
velocity. Several studies have considered (Nalluri and Ab Ghani 1996; 
Ab Ghani and Azamathulla 2010; Azamathulla et al. 2012; Ebtehaj et 
al. 2013) limiting velocity parameters in assessing the functional 
relationship below: 

 

)λ/A,DR/D,d/R,d/D,,D,f(C1)dg(sV/Fr s
2

grV                           (19) 

 
where Fr is the densimetric Froude number, V is the limiting velocity, g 
is the gravitational acceleration, s is the specific gravity of sediment 
(=ρ/ρs), CV is the volumetric sediment concentration, Dgr(=d(g(s-
1)/ν2)1/3) is the dimensionless particle number, d is the median particle 
diameter, D is the pipe diameter, R is the hydraulic radius, A is the 
cross sectional area of the flow, and λs is the overall friction factor of 
sediment. 

Ebtehaj and Bonakdari (2014a) classified the dimensionless 
parameters provided in Eq.19 in 5 different categories: movement (Fr), 
transport (CV), sediment (Dgr, d/D), transport mode (d/R, D2/A, R/D) 
and flow resistance (λs). Because there is only one parameter in the 
transport and flow resistance groups, this parameter is considered 
fixed. Sediment and transport have two and three different 
parameters, respectively; therefore, to consider the effect of all groups 
in Fr parameter estimation related to the movement group, six 
different models are presented as follows: 

 
Model 1: Fr = f (CV, Dgr, d/R, λs) 
Model 2: Fr = f (CV, Dgr, D

2/A, λs) 
Model 3: Fr = f (CV, Dgr, R/D, λs) 
Model 4: Fr = f (CV, d/D, d/R, λs) 
Model 5: Fr = f (CV, d/D, D2/A, λs 
Model 6: Fr = f (CV, d/D, R/D, λs) 

 
In this study, to predict the Fr parameter of the movement group in 

order to sediment transfer in non-deposition condition, three different 
data sets, including by Ab Ghani (1993), Ota and Nalluri (1999) and 
Vongvisessomjai et al. (2010), with a total of 218 different data are 
used. This data was obtained in different experimental conditions 
(pipe diameter, sediment and flow characteristics). Details of the 
experiments were presented in previous studies (i.e., Ebtehaj and 
Bonakdari 2014a, 2014b, 2016b). 

For modeling, the data were divided into two categories in this 
study: 70 % of data (150) for training and 30% (68) for testing model 
performance. The control parameters for each evolutionary algorithm 
employed in this study are GA, DE and PSO (Table 1). 

 
Table 1. Control parameter of evolutionary algorithms 

 
Parameters Value 

PSO 

Number of iterations 5000 

Number of Particles 50 

Initial inertia weight wmin 0.9 

Final inertia weight wmax 0.3 

Cognitive acceleration C1 2 

Social acceleration C2 2 

DE 

Number of dimensions (D) 4 

Population size (NP) 20 

Mutation constant (F) 0.5 

Crossover constant (CR) 0.9 

parameters; boundaries Vj(U) 12 

parameters; boundaries Vj(L) -12 

GA 

Population size 30 

Number of generations 60 

Crossover rate 0.8 

Mutation rate 0.2 

 
Selection Method 

Roulette wheel 
selection 

 

3.1. Statistical measure 
 

The employed statistical indices to performance evaluation of 
densimetric Froude number are as follows: 
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4. Results and discussion 
 
Fig. 6 shows the performance of the three hybrids, ANFIS-DE, 

ANFIS-GA and ANFIS-PSO as well as general ANFIS in estimating 
the limiting velocity, which is expressed as a dimensionless 
parameter, Fr, for 6 models proposed in the study. For each of the 
three hybrid models proposed using an evolutionary algorithm, model 
1 produced good results. The values estimated by the three methods 
often had less than 10 % relative error. But clearly, the hybrid 
algorithm in ANFIS performance training did not do as well as other 
methods, with a relative error of more than 10% as under and 
overestimation was used. Results obtained from Table 2 show that the 
statistical indicators for six different models in both testing and training 
datasets and using evolutionary algorithms for all indexes leads to 
better estimation. 

Compared to model 1, model 2 showed a completely different 
situation. Evidently, the performance of all models diminished. Since 
the only difference between this model and model 1 is using the D2/A 
parameter instead of the d/R parameter, it can be concluded that with 
fixed parameters, including transport (CV), flow resistance (λs) and 
sediment (Dgr), using parameter D2/A rather than d/R leads to at least 
10% increase in relative error with all methods. However, the relative 
error increase in the ANFIS-DE and ANFIS-GA methods is about 
15%. Therefore, the second model in any method presented in this 
study is uncertain. The performance comparison between evolutionary 
and hybrid algorithms for the presented input combination in model 2 
as obtained from Table 2 indicates the superiority of evolutionary 
algorithms. 

Similar to model 2, model 3 may not perform so well. Nonetheless, 
the best performance among the parameters related to the transport 
mode is attained when parameter d/R is used as the group 
representative. The prediction progress of this model is quite different 
than the second. In Model 3, most estimates are lower than the 
experimental data values. Therefore, using the model with the input 
combinations suggested in model 3 leads to high sediment deposition 
on the channel bed. 

The models’ quantitative performance indicates that except for the 
ANFIS-PSO method, which increased the estimation accuracy less 
than the ANFIS model, ANFIS-DE and ANFIS-GA performed better 
than the ANFIS model. Using the DE and GA algorithms in ANFIS 
training decreased the relative error by about 12% compared to the 
hybrid algorithm. In comparing models 4 and 2, the parameters 
related to sediment from Dgr to d/D changed and other groups’ 
parameters remained fixed. 

Fig. 6 shows that the performance of model 1 is as good as model 
4, and all estimated values had less than 10% relative error. Table 2 
shows that all methods, namely ANFIS, ANFIS-DE, ANFIS-GA and 
ANFIS-PSO, performed better than model 1. In fact, selecting the 
sediment parameter using d/D leads to better results than d/R. But it is P
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noteworthy that there is no significant difference in the index values of 
both models. Model 5, much like model 1, did not perform well; as a 
result, using d/D instead of d/R did not significantly change the 
outcomes, but there was improvement overall. The performance of 
model 6 compared to model 3 is similar to that of model 5 compared 
with 2. Using the d/D parameter related to sediment leads to better 
model performance than Dgr. 

The comparison between the presented models and results 
obtained from Table 2 indicate the superior performance of model 4 
among all methods. However, there were no significant differences 
between the hybrid methods, but the ANFIS-PSO Model 4 (R2=0.976, 
RMSE=0.26, MARE=0.057, BIAS=-0.004 and SI=0.059) exhibited the 
best performance among the methods. 

 

 
 
 

Fig. 6. Scatter plot of Fr prediction (testing). 
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Table 3 presents the DR values (relative predicted Fr to observed 
Fr) of different methods and model 4 in this study.  In this table, the 
differences of 0.05, 0.10, 0.15 and 0.20 to the value of the unit is 
provided for all methods (DR ±0.05, DR ±0.1, DR ±0.15, DR ±0.2). For 
the values with a difference of 0.05 to the unit (DR ± 5 %), ANFIS and 
two evolutionary methods, namely ANFIS-DE and ANFIS-GA showed 
approximately the same results; but it is clear that ANFIS-PSO had 
superior performance to the other methods. 
Immense difference between the gross evolutionary ANFIS and 
general ANFIS was observed. Hence, the performance of the general 
ANFIS method was verified with values having difference of 0.1 to the 
unit (DR ± 10%). It can be concluded from Table 3 that all methods 

presented in this study had the maximum difference of 0.15 to DR = 1 
(DR ± 15 %), which is 0.2 for general ANFIS. 

 
Table 3. DR values for different ANFIS methods (Model 4). 

Method 
(Model 4) 

(DR±5%) (DR±10%) (DR±15%) (DR±20%) 

ANFIS 0.27 0.53 0.87 1 
ANFIS-DE 0.29 0.82 1 1 
ANFIS-PSO 0.4 0.9 1 1 
ANFIS-GA 0.25 0.86 1 1 

 

Table 2. Performance evaluation of ANFIS methods in prediction of Fr (All models) 

 
 Models  R2 RMSE MARE BIAS SI 

Train 

 Model 1 ANFIS 0.933 0.579 0.120 -0.051 0.146 
   ANFIS-PSO 0.976 0.342 0.062 0.058 0.089 
   ANFIS-DE 0.972 0.370 0.074 0.008 0.095 
   ANFIS-GA 0.977 0.399 0.088 -0.201 0.102 
 Model 2 ANFIS 0.707 1.136 0.260 -0.031 0.289 

   ANFIS-PSO 0.905 0.638 0.099 0.002 0.164 
   ANFIS-DE 0.840 0.831 0.167 -0.086 0.213 
   ANFIS-GA 0.869 0.997 0.231 -0.527 0.256 

 Model 3 ANFIS 0.637 1.255 0.282 -0.099 0.314 
   ANFIS-PSO 0.874 0.736 0.160 -0.028 0.187 
   ANFIS-DE 0.906 0.637 0.121 0.059 0.163 
   ANFIS-GA 0.836 0.996 0.196 -0.457 0.255 

 Model 4 ANFIS 0.963 0.406 0.094 -0.027 0.103 
   ANFIS-PSO 0.984 0.262 0.060 -0.012 0.067 
   ANFIS-DE 0.973 0.341 0.072 0.033 0.087 
   ANFIS-GA 0.986 0.318 0.071 -0.185 0.082 

 Model 5 ANFIS 0.665 1.198 0.267 -0.027 0.305 
   ANFIS-PSO 0.899 0.659 0.102 -0.003 0.169 
   ANFIS-DE 0.913 0.632 0.125 0.001 0.162 
   ANFIS-GA 0.878 0.887 0.186 -0.424 0.227 

 Model 6 ANFIS 0.733 1.080 0.221 0.153 0.288 
   ANFIS-PSO 0.962 0.404 0.088 0.000 0.103 
   ANFIS-DE 0.916 0.613 0.105 0.041 0.157 
   ANFIS-GA 0.927 0.689 0.143 -0.343 0.177 

Test 

 Model 1 ANFIS 0.882 0.590 0.099 0.072 0.137 
   ANFIS-PSO 0.966 0.356 0.073 0.173 0.085 
   ANFIS-DE 0.963 0.392 0.076 0.216 0.089 
   ANFIS-GA 0.965 0.402 0.082 -0.249 0.092 

 Model 2 ANFIS 0.611 1.375 0.240 0.895 0.394 
   ANFIS-PSO 0.728 1.027 0.173 0.518 0.266 
   ANFIS-DE 0.720 1.248 0.232 0.881 0.285 
   ANFIS-GA 0.711 1.155 0.205 -0.525 0.263 

 Model 3 ANFIS 0.572 1.340 0.254 0.762 0.370 

   ANFIS-PSO 0.702 1.564 0.237 1.262 0.501 
   ANFIS-DE 0.869 0.663 0.128 0.264 0.151 
   ANFIS-GA 0.829 0.762 0.122 -0.235 0.174 

 Model 4 ANFIS 0.929 0.452 0.091 -0.077 0.101 
   ANFIS-PSO 0.976 0.260 0.057 -0.004 0.059 
   ANFIS-DE 0.965 0.323 0.065 0.076 0.074 
   ANFIS-GA 0.972 0.346 0.069 -0.175 0.079 

 Model 5 ANFIS 0.463 1.223 0.229 0.023 0.280 
   ANFIS-PSO 0.722 0.981 0.147 0.376 0.245 
   ANFIS-DE 0.868 0.801 0.154 0.507 0.183 
   ANFIS-GA 0.841 1.165 0.253 -0.882 0.266 

 Model 6 ANFIS 0.538 1.201 0.179 0.348 0.297 
   ANFIS-PSO 0.905 0.536 0.088 0.095 0.125 
   ANFIS-DE 0.869 0.606 0.112 -0.023 0.138 
   ANFIS-GA 0.899 0.785 0.138 -0.477 0.179 

 
5. Conclusions 

 
Sediment transport capacity is reduced by solid deposition in open 

channel flow. Therefore, an approach of estimating minimum velocity 
to prevent sediment deposition is required. This study presented three 
different evolutionary algorithms, i.e. differential evolution (DE), 
genetic algorithm (GA) and particle swarm optimization (PSO) based 
on adaptive neuro fuzzy inference systems (ANFIS), as new methods 
for estimating the limiting velocity (Fr). The new methods are ANFIS-
DE, ANFIS-GA and ANFIS-PSO. To estimate Fr, previously 
conducted studies and dimensional analysis were used, and different 

dimensionless parameters were identified in 5 groups: movement, 
transport, sediment, transport mode and flow resistance. Studies have 
shown that the d/D parameter in sediment and the d/R parameter in 
transport mode perform the best in their groups. Therefore, the best 
model was chosen as Fr = f (CV, d/R, d/D, λs). Comparing the 
proposed procedure performance with general ANFIS represents the 
ascending performance of ANFIS when using evolutionary algorithms 
in hybrid algorithms. Among the proposed methods, ANFIS-PSO (R2 = 
0.976, RMSE = 0.26, MARE = 0.057, BIAS = -0.004 and SI = 0.059) 
performed the best. Therefore, using evolutionary algorithms as an 
optimization algorithm method is useful to hybrid performance. 
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