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 Floods rank among the most destructive natural disasters worldwide, with their frequency 
and intensity amplified by climate change. This study presents an integrated approach 
combining hydraulic modeling and multi-sensor satellite data to improve floodplain mapping 
accuracy during the April 3, 2019 flood event in Kermanshah, western Iran. The research 
focuses on the confluence of the Gharasoo, Merek, and Razavar rivers, where combined 
flows created significant flood risks for Kermanshah city. The study makes several important 
methodological contributions to flood modeling. First, it demonstrates the value of 
simultaneous analysis of both steady and unsteady state conditions, providing a more 
comprehensive understanding of flood dynamics compared to conventional single-state 
approaches. Second, the integration of optical (Sentinel-2, Landsat) and radar (Sentinel-1) 
remote sensing data effectively overcomes the limitations of individual sensors, particularly 
in addressing cloud cover issues. Third, the implementation of Google Earth Engine enables 
near-real-time flood monitoring capabilities, significantly enhancing operational response 
potential. Finally, the development of robust validation metrics specifically adapted for flood 
model assessment represents an important step forward in model verification 
methodologies. HEC-Geo RAS simulations predicted extreme conditions with water levels 
rising up to 6 meters and flow velocities reaching 3m/s. Validation results showed strong 
agreement between unsteady state modeling and satellite observations (F1=0.73, F2=0.72), 
while steady-state conditions exhibited lower correlation (F1=0.41, F2=0.28). The model 
effectively tracked flood progression from inception to peak, while satellite imagery provided 
rapid regional coverage despite occasional cloud obstructions. 

Keywords: 

Flood plain  
Google earth engine 
Hec Geo Ras  

Satellite images  
Water level 
 

 

 
© The Author(s) 

Publisher: Razi University 

 

 
1. Introduction 
 
River floodplains have long been recognized as critical zones for 

agricultural productivity and human settlement due to their rich alluvial 
soils and reliable water access. However, these same characteristics that 
make floodplains attractive for human use also render them susceptible 

to periodic inundation events capable of causing catastrophic human and 

economic losses. In response to this persistent challenge, flood zoning 
has evolved as a fundamental engineering strategy for effective flood 
management and risk mitigation, necessitating the integration of diverse 

data sources ranging from ground-based measurements to advanced 
remote sensing platforms and sophisticated computational modeling 
techniques. The contemporary landscape of flood risk assessment has 

been transformed by significant technological advancements across 
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multiple domains. Hydraulic modeling tools, particularly the widely-
adopted HEC-RAS system developed by the U.S. Army Corps of 
Engineers, have set new standards for precision in flood simulation 

capabilities. Parallel developments in earth observation technologies, 
exemplified by the Sentinel and Landsat satellite constellations, have 
revolutionized our capacity for synoptic flood monitoring (Urzica et al., 

2018; Ayoubikia et al., 2019). The synergistic combination of these 

technological platforms with geographic information systems (GIS) 
incorporating specialized water indices (MNDWI, NDVI, AWEI, NDWI) 

and cloud-based processing environments like Google Earth Engine has 
created unprecedented opportunities for comprehensive flood mapping 
(Wulder et al., 2012). Despite these remarkable technological advances, 

significant challenges persist in many developing nations where flood risk 
maps often remain outdated or lack sufficient spatial and temporal 
resolution, creating critical vulnerabilities in flood preparedness systems 

(Institute of Catastrophic Loss Reduction 2019). The current state of flood 
modeling methodologies presents several persistent technical challenges 
that require careful consideration. While hydraulic models such as HEC-

RAS offer sophisticated capabilities for simulating flood dynamics, their 
accuracy remains heavily dependent on the quality of input parameters 
and the representativeness of local hydrological conditions. Conversely, 

satellite-based approaches, particularly those utilizing synthetic aperture 
radar (SAR) data, provide valuable tools for rapid flood extent mapping 
but face inherent limitations related to environmental variability and 
threshold determination challenges (Giustarini et al., 2013; Martinis et al., 

2009).  
The scientific community has explored various technical solutions to 

these challenges, including histogram-based thresholding techniques 
(Brivio et al., 2002; Henry et al., 2006; Brown et al., 2016) and advanced 
change detection methodologies (Giustarini et al., 2013; Schlaffer et al., 

2015; Gord, Hafezparast, Ghobadian. 2024). Research by Pulvirenti et al., 

(2010) has demonstrated that visual interpretation and manual 
adjustments can enhance region of interest (ROI) training and reduce 
classification errors, though Shen et al., (2019) have compellingly shown 

that such manual approaches remain prohibitively time-intensive and 
resource-demanding, particularly when rapid response is required during 

sequential flood events. Recent scientific investigations have increasingly 
highlighted the value of integrative approaches that combine multiple 
methodologies. Zotou et al., (2022) conducted a comparative analysis of 

SAR processing techniques for flood modeling in Central Greece, 
identifying significant discrepancies between HEC-RAS outputs and SAR-
derived flood extents attributable to uncertainties in SAR processing 

algorithms, satellite data characteristics, topographic representations, and 
modeling assumptions. In the Egyptian context, Elkhrachy et al., (2021) 

achieved 73.4-77.7% concordance between HEC-RAS simulations and 
SAR-identified water areas, while Eziine et al., (2020) successfully 

characterized the 2015 flood events in Tunisia through combined HEC-
RAS modeling and Sentinel-1 imagery analysis. Parallel work by Afzal et 

al., (2022) in Pakistan's Indus River basin demonstrated the potential for 

improved flood early warning systems through tighter integration of HEC-
RAS modeling with satellite observations. However, these otherwise 

comprehensive studies have typically focused on either steady-state peak 
flow conditions (as exemplified by Talbi 2011; Touihri 2015; Gharbi 2016) 
or unsteady flood hydrograph analyses, rarely examining both scenarios 

in tandem within a unified analytical framework. This research directly 
addresses these identified gaps through a comprehensive investigation of 

the 03/04/2019 flood event along a 16.5 km reach of Iran's Gharasoo 
River, employing an innovative dual-scenario analytical approach. The 
study implements both steady-state conditions analysis using Regional 

Flood Frequency Analysis (RFFA) for peak discharge estimation and 
unsteady-state conditions modeling through Soil Conservation Service 
(SCS) flood hydrographs within the HEC-RAS environment, with rigorous 

validation against Sentinel-1 satellite imagery processed through the 
Google Earth Engine platform. The research is designed to achieve three 
primary objectives: (1) systematic evaluation of HEC-RAS performance 

across both steady and unsteady hydrological scenarios; (2) 
comprehensive comparison of model outputs with satellite-derived flood 
extent mappings; and (3) critical assessment of integrated modeling 

approaches for enhanced flood risk assessment in data-limited regions. 
Building upon the foundational work of Chen et al., (2019) in flood risk 
mitigation and Afzal et al., (2022) in model-satellite integration, this study 

introduces significant methodological innovations through its dual-
scenario comparison framework and advanced cloud-based validation 
techniques. 

The paper is organized to provide complete methodological 
transparency and analytical rigor. Following this introduction, the study 
area and data sources are presented with complete technical 

specifications. The methodology section provides detailed explanation of 
both the HEC-RAS modeling framework and satellite image processing 
protocols. Results are presented through comparative analysis of model 

outputs and observed flood extents, followed by comprehensive 
discussion of implications for flood management practice. This structure 
ensures complete preservation of all relevant citations and technical 

details while maintaining optimal logical flow and emphasizing the study's 
novel contributions through simultaneous evaluation of multiple modeling 
scenarios against satellite observations. The ultimate aim of this work is 

to advance the development of more robust, empirically-validated flood 
prediction methodologies that can enhance community resilience in 
vulnerable floodplain regions worldwide. The research methodology is 

illustrated in Fig.1. 
 

2. Material and methods 

 
Kermanshah province covers an area of 24,500 square kilometers 
and is situated in the western part of Iran, bordering Iraq. It receives 

an average annual precipitation of 496 mm, as recorded by rain 
gauge stations over 35 years. The province's surface currents flow 
into the Persian Gulf through two secondary border basins, West 

and Karkheh. The Gharasoo River, a significant tributary of the 
Seymareh River, originates in the Ravansar district of 
Kermanshah, collecting water from parts of Kermanshah and 

Kurdistan provinces. Various branches, including those from 
Shahu Mountain, contribute to its flow, along with underground 
water sources. The river is formed by the confluence of Grab and 

Konab rivers in Eliasi village, which then merge with Ab Ravansar 
River to form Gharasoo. Additionally, Merek River joins at Haji 
Abad, and Razavar River at Doab village. Passing northeast of 

Kermanshah city, the river encounters Taq Bostan's Mirage and 
Tang Kneshet River. The research focuses on a segment of the 
Gharasoo River from Doab-Ghazanchi to the entry point of 

Kermanshah city, spanning approximately 16.5 kilometers as 
highlighted in Fig. 2.

 
Fig. 1. Flowchart of the present study. 
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Table 1. Satellite images.  

Post flood Pre flood 
Nearest image to the 

flood event 
 Satellite 

01/04/2019 to 08/04/2019 20/03/2019 to 29/03/2019 04/04/2019 MSI Sentinel 2 
01/04/2019 to 15/04/2019 01/03/2019 to 15/03/2019 01/04/2019 SAR-C Sentinel 1B 

01/04/2019 to 15/04/2019 01/03/2019 to 15/03/2019 06/04/2019 SAR-C Sentinel 1A 
01/04/2015 to 15/05/2019 01/02/2019-20/03/2019 15/04/2019 8 Landsat 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. (a) Flood on 3/04/2019 in the Gharasoo River, (b) catchment area, along with the hydrometric stations 
(c) and the study area. 
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2.1. Data preparation 
 
The satellite images of observed flood are acquired on April 1st and 6th 

of 2019 belonging to the Sentinel 1, 4th of April in sentinel 2, and 15th of 
April in Landsat satellites. 
 

2.2. Hydraulic modelling using Hec Geo RAS 
 
In this study, HEC-RAS was simulated under both steady-state and 

unsteady-state conditions. Water discharge for various return periods was 
calculated for steady-state scenarios using appropriate probability 
distributions, such as Lognormal (3-parameter), Frechet (3-parameter), 

and Log-Logistic (3-parameter), at the Doab Merek, Khersabad, 
Hojatabad, Pol Kohne, and Faraman stations. These calculations were 
then used to determine the discharge for Doab Ghazanchi corresponding 

to different return periods. In areas lacking hydrometric stations, the Flood 
Frequency Analysis (RFFA) method (Cunnane, 1998) was employed to 

estimate these discharges. For the unsteady-state conditions, the flood 
hydrograph at Doab-Ghazanchi was generated by simulating rainfall-
runoff processes within the upstream basin using the Soil Conservation 

Service (SCS) method. Introduced in 1957 through Equations 1-2 by the 
USDA Soil Conservation Service, the SCS method has proven effective 
for various watershed types, including urban, natural, and mixed 
watersheds (USDA, 1986; Avarand et al., 2025). 

𝑠 = 25.4 (
1000

𝐶𝑁
− 10)                                                       (1) 

𝑄 =
(𝑃−0.2𝑆)2

(𝑃−0.8𝑆)
                                                                  (2) 

where, P is the cumulative rainfall (mm) and Q is the runoff (mm). S is the 

potential maximum retention (mm), 𝐶𝑁 is the curve number and it is taken 
from the GIS maps in Fig. 3.   

 
(a) 

 
(b) 

Fig. 3.Landuse map (a) and slop map (b) for the study area. 

The DEM and other key components of flood magnitude mapping 

were examined using Hec Geo Ras that is specialized ArcGIS extension, 
facilitates the handling of geospatial data with HEC-RAS. Users can 
generate a Hec Geo Ras import sample with geometric attribute data from 

an existing DTM and additional datasets. Additionally, the extension 
enables processing of water surface profile results to visualize flood 
inundation depths and boundaries. Hec Geo Ras extension serves as an 

interface to establish a direct connection for transferring information 
between ArcGIS and Hec Ras (Desalegn and Mulu, 2021). The length of 
the studied river reach is about 16,500 meters. The plan of sections used 

in the simulation of the mentioned flood in Hec Geo Ras is shown in Fig. 

4. The Hec Geo Ras model results are influenced by the chosen time step 

(∆t). Using a small time step increases computation time. In this study, a 
one-hour time step was chosen because the volumes under the input 
hydrograph, the river's exit hydrograph, and those in intermediate sections 

are nearly identical. Terrain data provide a physical representation of the 
area.  

The Hec Geo Ras model develops a hydraulic simulation of floods, 

generating maps that display flood speed, height, and duration. The 
Manning's coefficient varies between 0.025 and 0.05 across different 
sections of the river. Finally, the model's results are compared to actual 

data from Sentinel imagery. 
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(a) 

 
(b) 

Fig. 4.(a) DEM and River component, (b) Plan of the studied river sections in HEC GEO RAS. 

 
2.3. SAR techniques for the detection of flood plain area 
 

This study utilized Sentinel-1 data acquired on April 06, 2019, three days 
post the flood on April 3, 2019. The Sentinel-1 sensor, owned by the 
European Space Agency (SciHub; https://scihub.copernicus.eu), was 

launched in 2014 and is accessible on Sentinel's online platform, with a 
12-day revisit cycle encompassing C-band (5.405 GHz). The radar 
satellites provide high geometric resolution (10 m) and dual-polarization 

(VH + VV). SAR systems act as active sensors in microwave wavelengths, 
with 2 cm microwaves (approx. 12 GHz) penetrating the atmosphere. This 
allows the sensors to capture images of Earth’s surface through clouds, 
regardless of time of day (Cao et al., 2019). Before delving into the various 

processing steps for SAR data enhancement, it's essential to understand 
the significance of each stage in improving the overall quality and 

accuracy of the images. Due to the lack of ground truth data during the 
flood event, the threshold was determined empirically by analyzing the 
backscatter histogram of water and non-water pixels. A fixed threshold 

(e.g., –3 dB for VH polarization) was chosen based on established 
literature for water detection in SAR imagery (Cao et al., 2019). Sensitivity 

analysis was performed to validate the robustness of the selected 
threshold. 
1-Apply Orbit Correction: supplies precise satellite position and velocity 

data, which updates the orbit state vectors in the product's abstract 
metadata. Precise orbit files are typically available days to week post-
product generation. As this is an optional step, the tool will proceed with 

the workflow if the orbit file is unavailable, facilitating rapid mapping 
applications. 
2-Thermal Noise Removal: Thermal noise correction is performed on 

uncorrected Sentinel-1 Level-1 GRD products.  
3-Radiometric Calibration: The goal of SAR calibration is to ensure that 
pixel values accurately reflect the radar backscatter of the scene. While 

uncalibrated SAR imagery is adequate for qualitative analysis, calibrated 
images are crucial for quantitative assessment. 
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4-Speckle Filtering: SAR images exhibit a texture known as speckles, 
which can diminish image quality and complicate feature interpretation. 
These speckles result from random constructive and destructive 

interference of de-phased yet coherent return waves scattered by 
elementary scatters within each resolution cell. Speckle noise reduction 
can be achieved through spatial filtering or multilook processing, with a 

Lee filter of size 5x5 applied in this step. Orbit correction and radiometric 
calibration are critical preprocessing steps to ensure geometric and 
radiometric accuracy, reducing distortions and biases in backscatter 

values. While their direct impact on flood detection accuracy was not 
quantified here, these steps are standard in SAR-based flood mapping to 
mitigate errors from terrain effects and sensor noise 

5-Terrain Correction: Topographical variations and the satellite sensor's 
tilt can distort distances in SAR images. Areas not directly aimed at the 
sensor's nadir location will experience distortion. Terrain corrections are 

applied to compensate for these inaccuracies, ensuring a realistic 
geometric representation in the image. The Sentinel-1 dataset was hosted 
on the GEE platform to execute all necessary tasks for SAR satellite data 

processing. Utilizing the GEE platform, tasks such as orbit correction, 
noise reduction, radiometric calibration, and terrain correction were 
performed using SRTM data. Additionally, the backscatter intensity was 

converted to decibels (dB) following Eq. 3. 

𝜎° = 10 ∗ 𝑙𝑜𝑔10
𝜎°

 
(3) 

Water regions were detected in SAR radar images using several 
methods, including interferometric coherence calculation (Chini et al., 
2019), histogram thresholding techniques (Chini et al., 2017; Liang & Liu, 

2020), a region growing algorithm and active contour mode (Teatini et al., 
2012), and object-oriented classification (Horritt et al., 2001). This study 

utilized the histogram method to determine optimal threshold values for 

detecting water bodies. The histogram of the Sentinel-1 image displays 
intensity values, with bars indicating the frequency of various 
backscattering intensities per pixel. The valley between two peaks 

represents the backscattering coefficient threshold that differentiates 
water from non-water regions. Accurate threshold calculations are 
essential for identifying water areas using SAR data and often require 

comparison with other methods. We delineated a water region along a 
section of the Gharasoo River using Sentinel-2 color images as a 
reference, aiming to determine the most suitable SAR threshold. After 

processing and classifying the images in ArcGIS 10.2, the water area of 
the Gharasoo region, based on the Sentinel-2 image, was found to be 86 
km², as depicted in Fig. 5. 

 
Fig. 5. Prennial water extraction for Gharasoo River in the GEE. 

 
2.4. Optical sensors 

 
Various techniques and indices are available for water zoning extraction 
from optical satellite imagery (Tobón-Marín and Barriga, 2020). The most 

commonly used indices for this purpose are the Normalized Difference 
Water Index (NDWI) (McFeeters, 1996), Modified Normalized Difference 
Water Index (MNDWI) (Xu, 2006), and the recently developed Automated 
Water Extraction Index (AWEI) (Feyisa et al., 2014) (Sinha et al., 2008; 
Martinis et al., 2013). The ability to detect water bodies in multispectral 

satellite imagery stems from the fact that increased surface moisture leads 

to decreased reflectance in the visible, near-infrared (NIR), and 
particularly short-wave infrared (SWIR) regions of the electromagnetic 
spectrum (Bach and Verhoef, 2003). By analyzing normalized differences 

in reflection coefficients, distinguishable water bodies can be identified 
based on their spectral characteristics. The NDWI is specifically designed 
to define water body boundaries, differentiate between water, soil, and 

vegetation, and assess water turbidity and pollution. It produces index 
values between 0 and 1, representing water bodies at various depths and 
contamination levels through a gradient of positive values (Eq. 4). 

NDWI= 
ρGreen−ρNIR

ρGreen+ρNIR
= 

ρBand3−ρBand8

ρBand3+ρBand8
                                                    (4) 

where, 𝜌𝐺𝑟𝑒𝑒𝑛 and 𝜌𝑁𝐼𝑅 represent the reflection coefficients of 
electromagnetic radiation in the green and NIR spectral ranges, 

respectively. MNDWI enhances the visibility of open water bodies and 
reduces noise from urban areas, vegetation, and soils (Li et al., 2022) in 

Eq. 5. 

 

MNDWI= 
 ρGreen−ρSWIR

ρGreen+ρSWIR
=

ρBand3−ρBand11

ρBand3+ρBand11
                                             (5) 

where, 𝜌𝑆𝑊𝐼𝑅 represents the reflection coefficient of electromagnetic 
radiation in the SWIR range. The right side of the expressions 

corresponds to Sentinel-2 band numbers. Pixels were classified as 

"water" if 𝑁𝐷𝑊𝐼>0 or 𝑀𝑁𝐷𝑊𝐼>0. 
 
2.5. Accuracy assessment of HEC GEO RAS and satellite image 

water extent 
 

To evaluate the fit of raster layers from SAR images against the raster of 

overflowed zones recreated by Hec-RAS, we utilize two scales: feature  
agreement statistics F1 and F2, as defined in equations 6-7 by Horrit et 
al., (2007) and Di Baldasarre et al., (2009).  

F1 =
A

A+B+C
                                                                                              (6) 
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F2 =
A−B

A+B+C
                                                                                              (7) 

In these equations, A represents the total inundated area correctly 

predicted by the model (from the detected Sentinel-1 image), B is the area 
overestimated, and C is the area underestimated. F1 ranges from 0 to +1, 
while F2 ranges from -1 to +1. Higher values of F1 and F2 (greater than 

0.5) indicate better model performance. 
 
3. Results and discussion 

3.1. HEC RAS simulation in steady state and unsteady state 
scenarios 
 

Ability to model steady and unsteady flow, along with powerful graphics, 
has made Hec Geo Ras software one of the most practical tools in water 
engineering. The Table 2 displays the results of calculating flood 

discharge for various return periods with the most optimal distributions in 
EASY-FIT model (Schittkowski, 2002), additionally, the RFFA results for 
Doab Ghazanchi are presented in the last row of the Table 2. The changes 

in cross-sectional area and average velocity of the Gharasoo River for 
different return periods of discharge are shown in Fig. 6-a, b. Longitudinal 
profiles of water surface elevation are among the valuable outputs of the 

HEC-RAS model. Therefore, after running the flow simulation model, the 

longitudinal profiles of water surface elevation changes for flood events 
with DRP, were extracted and presented in Fig. 6c. The average 
cumulative rainfall recorded at Kermanshah and Ravansar synoptic 

stations between 31/03/2019 and 2/04/2019, shown in Fig. 7a, was used 
for runoff simulation. The upstream basin of the study area covers 4590 
sq km, with a concentration time of 30 h. A CN value of 73 was identified 

as optimal for the analysis (Fig. 3). The resulting hydrograph depicting the 
flood caused by the rainfall event is displayed in Fig. 7-b (Hafezparast, 
Gord, Ghobadian, 2025).  The simulated SCS peak flood in Doab-

Ghazanchi was estimated at 860.25 m3/s (Fig. 7b). Findings indicated that 
the 25-year peak flood, at 723.5 m3/s using the RFFA method in Doab 
Ghazanchi, is lower than the SCS method in this region. 

 
3.2. Water level and velocity of flood in the Hec Geo Ras 
 

HEC GEO RAS model simulated the variations in water level profiles for 
steady and un steady states, including flow velocity, normal depth, critical 
depth, and hydraulic parameters. Water level and velocity maps are 

categorized into four and five groups in a GIS environment and shown in 
Figs. 8a, b - 9a, b. The simulated water heights reached over 4 m in the 
riverbed and between 1 and 2 m on the floodplain. In Kermanshah city, 

the water level is estimated at 1 m, with a maximum height of 6 m and a 
maximum velocity of 3 m/s. 
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Table 2. Predicted Discharge with the best distribution in hydrometric stations and RFFA in Doab-Ghazanchi area. 

Stations Best distribution 
Return period, Year 

2 3 5 10 25 50 100 200 500 1000 

Doab merek Lognormal (3P) 33.8 51.7 80.9 128.6 211.4 291.5 389.5 507.9 700.7 878.3 

Khersabad Lognormal (3P) 37.5 52.5 72.9 100.8 141.0 174.4 210.6 250.0 307.2 354.7 

Hojatabad Frechet 3p 76.2 104.6 147.9 217.1 340.7 468.5 637.1 859.8 1268.3 1695.3 

Pol-kohne log-logistic 3p 100.5 149.9 236.9 402.5 775.1 1256 2026.4 3263.6 6121.5 9849.6 

Faraman log_person3 107.1 160.1 247.6 395.2 665.3 943.1 1302 1761.4 2563.9 3356.7 
Doab-Ghazanchi RFFA 93.8 139.9 221.1 375.6 723.5 1172.3 1891.3 3046.1 5713.5 9193.1 
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(b) 

 
(c) 

Fig. 6. The changes in cross-sectional area (a), average velocity (b) and longitudinal profiles of water surface elevation (c) of the 
Gharasoo River for different return periods. 

  
(a) (b) 

Fig. 7. (a) Cumulative rainfall distribution, and (b) flood resulting from it. 
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(a) 

 
(b) 

Fig. 8. Water depths (a) and Water velocity (b) of the extent of flooded areas for 25y flood with Hec-Geo-RAS. 
 

 
3.3. Satellite images processing in GEE 

 
The images related to the Sentinel 2 satellite on 04/04/2019 that is on the 
exact flooded day, was very cloudy due to the heavy rain, and with the 

filters applied to remove the cloud, the quality was still not good that is 
obvious in Fig. 10. 
Landsat image was acquired on 15/04/2019 that was about 11 days after 

flood but still it showed the flooded area that is clear in Fig.11. The 
Sentinel 1 image from 06/04/2019, acquired 2 days post-flood and 
unaffected by clouds, is more suitable for comparison with the Hec-Geo-

RAS model output. This image is shown in Fig.12 for further study in this 
area. 
3.4. Evaluating Hec-Geo-RAS simulation and satellite images 

  
Sentinel-1 images on GEE are utilized for data processing, cloud and 
speckle filtering, and automated water detection threshold (Parida et al., 

2021) in comparison to the Hec Geo Ras model. The maximum 25-year 

flood for steady state conditions and the SCS flood hydrograph for 
unsteady state scenarios are assessed using satellite imagery. Water 
areas in the S1 satellite image and Hec Geo Ras SCS floodplain are 

overlaid in a GIS environment, and the coefficients of A, B, and C are 
extracted, as shown in Fig.13 and Table 3. F1 and F2 indices for the Max 
SCS flood exhibited values of 0.73 and 0.72, indicating that the Hec-Geo-

RAS water plains were well-aligned with the S1 satellite images for 
unsteady scenario. Conversely, the evaluation indices F1 and F2 
indicated that the SCS flood in Non-state scenario overlapped more with 

the satellite images compared to the 25y flood in steady state scenario. 
Studies by Karkouti et al., (2010) on the flood of 19/03/1998, Jahandideh 
et al., (2011) on the flood of 29/03/2005, and Jabbari et al., (2017) 

estimating the maximum flood in the Ghazanchi area using Creager, HEC 
HMS, SCS and probabilistic distribution methods indicate that the peak 
flow ranges from 720 to 900 m3/s, aligning with this study. 

Table 3. Evaluation Factors in steady state and unsteady state scenarios. 

Satellite imagery 
Hec-Geo-RAS simulation 

scenarios 

A B C F1 F2 

Number of pixels  

Sentinel-1 
Unsteady state 40896 211 15105 0.73 0.72 

steady state 29786 9472 32646 0.41 0.28 
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(a) 

 
(b) 

Fig. 9. (a) Water depth, and (b) water velocity of the maximum flood of the SCS method in the Hec-Geo-RAS. 

Simulated water levels and velocities were measured during a flood, 
with heights surpassing 4m in the riverbed and peaking at 6m with a 
maximum velocity of 3ms-1. A comparison to Ezzine et al., (2020) reveals 

strong agreement between Hec Geo Ras and the observed flood extents 
seen in Sentinel-1 images. Water levels ranged from 1 to 6m, while 

velocities ranged from 1 to 4ms-1 in the Medjerda Basin in northern 
Tunisia. This data is important for assessing flood risks and can aid 
decision-makers in understanding factors such as height, velocity, and 

flow duration. 

 
(a) 
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(b) 

Fig. 10. (a) Sentinel-2 acquired in March 2019 before flood, (b) NDWI and MNDWI in April 2019 after flood in the GEE platform in 
the Gharasoo River. 

  
Fig. 11. Landsat-8 acquired in March 2019 before flood (Left) and in April 2019 after flood (Right) in the GEE platform in the 

Gharasoo River. 
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Fig. 12. Sentinel-1 data VH polarization and acquired in March 2019 before flood (up) and in April 2019 after flood (down) in GEE 

platform in the Gharasoo River. 

Issues concerning SAR images include signal scattering when 
signals bounce off surfaces and sensors fail to pick them up. Dark areas 
don't always mean flooded areas, and uncertainties can affect results. 

Satellite images may not be available for all locations simultaneously, 
causing a delay between flooding and image capture. SAR images 
encounter challenges due to signal scattering during reflection and 

reception. We employed the thresholding method to extract flooded areas 
from pre- and post-flood Sentinel-1 images, achieving agreement values 
of 72% and 73% for VH polarizations. This approach is straightforward, 

quick, and reliable for flood mapping. In comparison with studies on 
optimal thresholds for identifying water areas, Elkhrachy et al., (2021) 

reported a similarity of 74.2% to 89.7% between simulated HEC-RAS 

water areas and SAR data, while Hong Quang et al., (2020) noted the 

highest agreement of 88.3% between water levels and calibrated water 
extent using HEC-RAS 2D. Ezzin et al., (2020) evaluated the performance 

of HEC-RAS using S1 satellite images by calculating F1 and F2 values, 
which both exceeded 0.5. Afzal et al., (2022) discovered that proper 

calibration and validation of HEC–RAS inundation modeling with in situ 

flood extent is crucial. Achieving this during a catastrophic flood may be 
challenging. However, using MODIS and Landsat data for flood extent 
comparison has proven beneficial. The calibration and validation results 

show strong agreement between simulated and observed flood extents in 
most areas, with the model achieving an accuracy of 0.64 for F1 and 0.87 
for F2. 
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Fig. 13. Extraction of A, B, and C components of F-statistic scales between Hec-Geo-RAS and SAR satellite image water areas for maximum 

SCS flood. 

4. Conclusions 
 

In this research, a flood event simulated in April 2019 focusing on the 
Doab-Ghazanchi section upstream of Kermanshah city in western Iran. 
Peak flood and flood hydrograph were calculated using the RFFA and 

SCS methods and simulated in Hec Geo Ras for steady-state and 
unsteady-state scenarios. The results indicated that the 25-year flood and 
SCS peak flood values were estimated to be 723.5 m3/s and 860 m3/s, 

while the maximum water level and velocity were modeled at around 6 m 
and 3 m/s. GEE Satellite imagery analysis revealed that on the specific 
day of the flood, 04/04/2019, the Sentinel 2 images were heavily obscured 

by clouds caused by intense rain. Despite efforts to eliminate the cloud 
cover using filters, the image quality remained inadequate. Landsat 
images obtained on 15/04/2019, approximately 11 days after the flood, 

were compared. Considering this, the Sentinel 1 images from 06/04/2019, 
captured just two days after the flood and free from cloud interference, 
offer a more appropriate basis for comparison with the Hec-Geo-RAS 

model results. Assessing the Hec-Geo-RAS model with S1 satellite 
images using F1 and F2 indices showed values of 0.73 and 0.72 for the 
max SCS flood, indicating good alignment with S1 flood plain. For the 25-

year flood in a steady state scenario, the values were 0.41 and 0.28, 
reflecting poor alignment. The analysis suggests that the unsteady state 
scenario in Hec-Geo-RAS, which employs the flood hydrograph to identify 

flood plains, is more appropriate than using peak flood value in the RFFA 
method for steady state scenarios. The results demonstrated the critical 
importance of properly simulating HEC-RAS inundation modeling with in 

situ flood extent needs. However, this may be difficult to accomplish 
during a catastrophic flood event. The use of satellite-based flood extent 
proved to be valuable for comparing simulated and actual floodplains. 

 
Nomenclature   

AWEI Automated water extraction index 

CN Curve number 
DEM Digital elevation model  
DTM Digital terrain model 

FLOMPY Flood mapping python toolbox 
GEE Google earth engine 
GIS  Geographic information systems 

MNDWI Modified normalized difference water index  
NDVI Normalized difference vegetation index 
NDWI Normalized difference water index 

RFFA Regional flood frequency analysis 
SAR Synthetic aperture radar 
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