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Floods rank among the most destructive natural disasters worldwide, with their frequency
and intensity amplified by climate change. This study presents an integrated approach
combining hydraulic modeling and multi-sensor satellite data to improve floodplain mapping
accuracy during the April 3, 2019 flood event in Kermanshah, western Iran. The research
focuses on the confluence of the Gharasoo, Merek, and Razavar rivers, where combined
flows created significant flood risks for Kermanshah city. The study makes several important
methodological contributions to flood modeling. First, it demonstrates the value of
simultaneous analysis of both steady and unsteady state conditions, providing a more
comprehensive understanding of flood dynamics compared to conventional single-state
approaches. Second, the integration of optical (Sentinel-2, Landsat) and radar (Sentinel-1)
remote sensing data effectively overcomes the limitations of individual sensors, particularly
in addressing cloud cover issues. Third, the implementation of Google Earth Engine enables
near-real-time flood monitoring capabilities, significantly enhancing operational response
potential. Finally, the development of robust validation metrics specifically adapted for flood
model assessment represents an important step forward in model verification
methodologies. HEC-Geo RAS simulations predicted extreme conditions with water levels
rising up to 6 meters and flow velocities reaching 3m/s. Validation results showed strong
agreement between unsteady state modeling and satellite observations (F1=0.73, F2=0.72),
while steady-state conditions exhibited lower correlation (F1=0.41, F2=0.28). The model
effectively tracked flood progression from inception to peak, while satellite imagery provided
rapid regional coverage despite occasional cloud obstructions.

Introduction

economic losses. In response to this persistent challenge, flood zoning
has evolved as a fundamental engineering strategy for effective flood

River floodplains have long been recognized as critical zones for
agricultural productivity and human settlement due to their rich alluvial
soils and reliable water access. However, these same characteristics that
make floodplains attractive for human use also render them susceptible
to periodic inundation events capable of causing catastrophic human and
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management and risk mitigation, necessitating the integration of diverse
data sources ranging from ground-based measurements to advanced
remote sensing platforms and sophisticated computational modeling
techniques. The contemporary landscape of flood risk assessment has
been transformed by significant technological advancements across
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multiple domains. Hydraulic modeling tools, particularly the widely-
adopted HEC-RAS system developed by the U.S. Army Corps of
Engineers, have set new standards for precision in flood simulation
capabilities. Parallel developments in earth observation technologies,
exemplified by the Sentinel and Landsat satellite constellations, have
revolutionized our capacity for synoptic flood monitoring (Urzica et al.,
2018; Ayoubikia et al., 2019). The synergistic combination of these
technological platforms with geographic information systems (GIS)
incorporating specialized water indices (MNDWI, NDVI, AWEI, NDWI)
and cloud-based processing environments like Google Earth Engine has
created unprecedented opportunities for comprehensive flood mapping
(Wulder et al., 2012). Despite these remarkable technological advances,
significant challenges persist in many developing nations where flood risk
maps often remain outdated or lack sufficient spatial and temporal
resolution, creating critical vulnerabilities in flood preparedness systems
(Institute of Catastrophic Loss Reduction 2019). The current state of flood
modeling methodologies presents several persistent technical challenges
that require careful consideration. While hydraulic models such as HEC-
RAS offer sophisticated capabilities for simulating flood dynamics, their
accuracy remains heavily dependent on the quality of input parameters
and the representativeness of local hydrological conditions. Conversely,
satellite-based approaches, particularly those utilizing synthetic aperture
radar (SAR) data, provide valuable tools for rapid flood extent mapping
but face inherent limitations related to environmental variability and
threshold determination challenges (Giustarini et al., 2013; Martinis et al.,
2009).

The scientific community has explored various technical solutions to
these challenges, including histogram-based thresholding techniques
(Brivio et al., 2002; Henry et al., 2006; Brown et al., 2016) and advanced
change detection methodologies (Giustarini et al., 2013; Schlaffer et al.,
2015; Gord, Hafezparast, Ghobadian. 2024). Research by Pulvirenti et al.,
(2010) has demonstrated that visual interpretation and manual
adjustments can enhance region of interest (ROI) training and reduce
classification errors, though Shen et al., (2019) have compellingly shown
that such manual approaches remain prohibitively time-intensive and
resource-demanding, particularly when rapid response is required during
sequential flood events. Recent scientific investigations have increasingly
highlighted the value of integrative approaches that combine multiple
methodologies. Zotou et al., (2022) conducted a comparative analysis of
SAR processing techniques for flood modeling in Central Greece,
identifying significant discrepancies between HEC-RAS outputs and SAR-
derived flood extents attributable to uncertainties in SAR processing
algorithms, satellite data characteristics, topographic representations, and
modeling assumptions. In the Egyptian context, Elkhrachy et al., (2021)
achieved 73.4-77.7% concordance between HEC-RAS simulations and
SAR-identified water areas, while Eziine et al., (2020) successfully
characterized the 2015 flood events in Tunisia through combined HEC-
RAS modeling and Sentinel-1 imagery analysis. Parallel work by Afzal et
al., (2022) in Pakistan's Indus River basin demonstrated the potential for
improved flood early warning systems through tighter integration of HEC-
RAS modeling with satellite observations. However, these otherwise
comprehensive studies have typically focused on either steady-state peak
flow conditions (as exemplified by Talbi 2011; Touihri 2015; Gharbi 2016)
or unsteady flood hydrograph analyses, rarely examining both scenarios
in tandem within a unified analytical framework. This research directly
addresses these identified gaps through a comprehensive investigation of

the 03/04/2019 flood event along a 16.5 km reach of Iran's Gharasoo
River, employing an innovative dual-scenario analytical approach. The
study implements both steady-state conditions analysis using Regional
Flood Frequency Analysis (RFFA) for peak discharge estimation and
unsteady-state conditions modeling through Soil Conservation Service
(SCS) flood hydrographs within the HEC-RAS environment, with rigorous
validation against Sentinel-1 satellite imagery processed through the
Google Earth Engine platform. The research is designed to achieve three
primary objectives: (1) systematic evaluation of HEC-RAS performance
across both steady and unsteady hydrological scenarios; (2)
comprehensive comparison of model outputs with satellite-derived flood
extent mappings; and (3) critical assessment of integrated modeling
approaches for enhanced flood risk assessment in data-limited regions.
Building upon the foundational work of Chen et al., (2019) in flood risk
mitigation and Afzal et al., (2022) in model-satellite integration, this study
introduces significant methodological innovations through its dual-
scenario comparison framework and advanced cloud-based validation
techniques.

The paper is organized to provide complete methodological
transparency and analytical rigor. Following this introduction, the study
area and data sources are presented with complete technical
specifications. The methodology section provides detailed explanation of
both the HEC-RAS modeling framework and satellite image processing
protocols. Results are presented through comparative analysis of model
outputs and observed flood extents, followed by comprehensive
discussion of implications for flood management practice. This structure
ensures complete preservation of all relevant citations and technical
details while maintaining optimal logical flow and emphasizing the study's
novel contributions through simultaneous evaluation of multiple modeling
scenarios against satellite observations. The ultimate aim of this work is
to advance the development of more robust, empirically-validated flood
prediction methodologies that can enhance community resilience in
vulnerable floodplain regions worldwide. The research methodology is
illustrated in Fig.1.

2. Material and methods

Kermanshah province covers an area of 24,500 square kilometers
and is situated in the western part of Iran, bordering Iraqg. It receives
an average annual precipitation of 496 mm, as recorded by rain
gauge stations over 35 years. The province's surface currents flow
into the Persian Gulf through two secondary border basins, West
and Karkheh. The Gharasoo River, a significant tributary of the
Seymareh River, originates in the Ravansar district of
Kermanshah, collecting water from parts of Kermanshah and
Kurdistan provinces. Various branches, including those from
Shahu Mountain, contribute to its flow, along with underground
water sources. The river is formed by the confluence of Grab and
Konab rivers in Eliasi village, which then merge with Ab Ravansar
River to form Gharasoo. Additionally, Merek River joins at Haji
Abad, and Razavar River at Doab village. Passing northeast of
Kermanshah city, the river encounters Taq Bostan's Mirage and
Tang Kneshet River. The research focuses on a segment of the
Gharasoo River from Doab-Ghazanchi to the entry point of
Kermanshah city, spanning approximately 16.5 kilometers as
highlighted in Fig. 2.
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Fig. 1. Flowchart of the present study.
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Table 1. Satellite images.

Nearest image to the

Satellite Pre flood Post flood
flood event
Sentinel 2 MSI 04/04/2019 20/03/2019 to 29/03/2019 01/04/2019 to 08/04/2019
Sentinel 1B SAR-C 01/04/2019 01/03/2019 to 15/03/2019 01/04/2019 to 15/04/2019
Sentinel 1A SAR-C 06/04/2019 01/03/2019 to 15/03/2019 01/04/2019 to 15/04/2019
Landsat 8 15/04/2019 01/02/2019-20/03/2019 01/04/2015 to 15/05/2019
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Fig. 2. (a) Flood on 3/04/2019 in the Gharasoo River, (b) catchment area, along with the hydrometric stations
(c) and the study area.
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2.1. Data preparation

The satellite images of observed flood are acquired on April 1st and 6th
of 2019 belonging to the Sentinel 1, 4™ of April in sentinel 2, and 15" of
April in Landsat satellites.

2.2. Hydraulic modelling using Hec Geo RAS

In this study, HEC-RAS was simulated under both steady-state and
unsteady-state conditions. W ater discharge for various return periods was
calculated for steady-state scenarios using appropriate probability
distributions, such as Lognormal (3-parameter), Frechet (3-parameter),
and Log-Logistic (3-parameter), at the Doab Merek, Khersabad,
Hojatabad, Pol Kohne, and Faraman stations. These calculations were
then used to determine the discharge for Doab Ghazanchi corresponding
to different return periods. In areas lacking hydrometric stations, the Flood
Frequency Analysis (RFFA) method (Cunnane, 1998) was employed to

estimate these discharges. For the unsteady-state conditions, the flood
hydrograph at Doab-Ghazanchi was generated by simulating rainfall-
runoff processes within the upstream basin using the Soil Conservation
Service (SCS) method. Introduced in 1957 through Equations 1-2 by the
USDA Soil Conservation Service, the SCS method has proven effective
for various watershed types, including urban, natural, and mixed
watersheds (USDA, 1986; Avarand et al., 2025).

B 1000

s =254 (_C"’z 10) 1)
_ (P-0.25)

Q= (P-0.85) @

where, P is the cumulative rainfall (mm) and Q is the runoff (mm). S is the
potential maximum retention (mm), CN is the curve number and it is taken
from the GIS maps in Fig. 3.
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Fig. 3.Landuse map (a) and slop map (b) for the study area.

The DEM and other key components of flood magnitude mapping
were examined using Hec Geo Ras that is specialized ArcGIS extension,
facilitates the handling of geospatial data with HEC-RAS. Users can
generate a Hec Geo Ras import sample with geometric attribute data from
an existing DTM and additional datasets. Additionally, the extension
enables processing of water surface profile results to visualize flood
inundation depths and boundaries. Hec Geo Ras extension serves as an
interface to establish a direct connection for transferring information
between ArcGIS and Hec Ras (Desalegn and Mulu, 2021). The length of
the studied river reach is about 16,500 meters. The plan of sections used
in the simulation of the mentioned flood in Hec Geo Ras is shown in Fig.

4. The Hec Geo Ras model results are influenced by the chosen time step
(At). Using a small time step increases computation time. In this study, a
one-hour time step was chosen because the volumes under the input
hydrograph, theriver's exit hydrograph, and those in intermediate sections
are nearly identical. Terrain data provide a physical representation of the
area.

The Hec Geo Ras model develops a hydraulic simulation of floods,
generating maps that display flood speed, height, and duration. The
Manning's coefficient varies between 0.025 and 0.05 across different
sections of the river. Finally, the model's results are compared to actual
data from Sentinel imagery.
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Fig. 4.(a) DEM and River component, (b) Plan of the studied river sections in HEC GEO RAS.

2.3. SAR techniques for the detection of flood plain area

This study utilized Sentinel-1 data acquired on April 06, 2019, three days
post the flood on April 3, 2019. The Sentinel-1 sensor, owned by the
European Space Agency (SciHub; https://scihub.copernicus.eu), was
launched in 2014 and is accessible on Sentinel's online platform, with a
12-day revisit cycle encompassing C-band (5.405 GHz). The radar
satellites provide high geometric resolution (10 m) and dual-polarization
(VH +VV). SAR systems act as active sensors in microwave wavelengths,
with 2 cm microwaves (approx. 12 GHz) penetrating the atmosphere. This
allows the sensors to capture images of Earth’s surface through clouds,
regardless of time of day (Cao et al., 2019). Before delving into the various
processing steps for SAR data enhancement, it's essential to understand
the significance of each stage in improving the overall quality and
accuracy of the images. Due to the lack of ground truth data during the
flood event, the threshold was determined empirically by analyzing the
backscatter histogram of water and non-water pixels. A fixed threshold

(e.g., =3 dB for VH polarization) was chosen based on established
literature for water detection in SAR imagery (Cao et al., 2019). Sensitivity
analysis was performed to validate the robustness of the selected
threshold.

1-Apply Orbit Correction: supplies precise satellite position and velocity
data, which updates the orbit state vectors in the product's abstract
metadata. Precise orbit files are typically available days to week post-
product generation. As this is an optional step, the tool will proceed with
the workflow if the orbit file is unavailable, facilitating rapid mapping
applications.

2-Thermal Noise Removal: Thermal noise correction is performed on
uncorrected Sentinel-1 Level-1 GRD products.

3-Radiometric Calibration: The goal of SAR calibration is to ensure that
pixel values accurately reflect the radar backscatter of the scene. While
uncalibrated SAR imagery is adequate for qualitative analysis, calibrated
images are crucial for quantitative assessment.
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4-Speckle Filtering: SAR images exhibit a texture known as speckles,
which can diminish image quality and complicate feature interpretation.
These speckles result from random constructive and destructive
interference of de-phased yet coherent return waves scattered by
elementary scatters within each resolution cell. Speckle noise reduction
can be achieved through spatial filtering or multilook processing, with a
Lee filter of size 5x5 applied in this step. Orbit correction and radiometric
calibration are critical preprocessing steps to ensure geometric and
radiometric accuracy, reducing distortions and biases in backscatter
values. While their direct impact on flood detection accuracy was not
quantified here, these steps are standard in SAR-based flood mapping to
mitigate errors from terrain effects and sensor noise

5-Terrain Correction: Topographical variations and the satellite sensor's
tilt can distort distances in SAR images. Areas not directly aimed at the
sensor's nadir location will experience distortion. Terrain corrections are
applied to compensate for these inaccuracies, ensuring a realistic
geometric representation in the image. The Sentinel-1 dataset was hosted
on the GEE platform to execute all necessary tasks for SAR satellite data
processing. Utilizing the GEE platform, tasks such as orbit correction,
noise reduction, radiometric calibration, and terrain correction were
performed using SRTM data. Additionally, the backscatter intensity was
converted to decibels (dB) following Eq. 3.

o’ =10+*log¥, ©)

Water regions were detected in SAR radar images using several
methods, including interferometric coherence calculation (Chini et al.,
2019), histogram thresholding techniques (Chini et al., 2017; Liang & Liu,
2020), aregion growing algorithm and active contour mode (Teatini et al.,
2012), and object-oriented classification (Horritt et al., 2001). This study
utilized the histogram method to determine optimal threshold values for
detecting water bodies. The histogram of the Sentinel-1 image displays
intensity values, with bars indicating the frequency of various
backscattering intensities per pixel. The valley between two peaks
represents the backscattering coefficient threshold that differentiates
water from non-water regions. Accurate threshold calculations are
essential for identifying water areas using SAR data and often require
comparison with other methods. We delineated a water region along a
section of the Gharasoo River using Sentinel-2 color images as a
reference, aiming to determine the most suitable SAR threshold. After
processing and classifying the images in ArcGIS 10.2, the water area of
the Gharasoo region, based on the Sentinel-2 image, was found to be 86
kmz, as depicted in Fig. 5.
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Fig. 5. Prennial water extraction for Gharasoo River in the GEE.

2.4. Optical sensors

Various techniques and indices are available for water zoning extraction
from optical satellite imagery (Tob6n-Marin and Barriga, 2020). The most
commonly used indices for this purpose are the Normalized Difference
Water Index (NDWI) (McFeeters, 1996), Modified Normalized Difference
Water Index (MNDW!1) (Xu, 2006), and the recently developed Automated
Water Extraction Index (AWEI) (Feyisa et al., 2014) (Sinha et al., 2008;
Martinis et al., 2013). The ability to detect water bodies in multispectral
satellite imagery stems from the fact that increased surface moisture leads
to decreased reflectance in the visible, near-infrared (NIR), and
particularly short-wave infrared (SWIR) regions of the electromagnetic
spectrum (Bach and Verhoef, 2003). By analyzing normalized differences
in reflection coefficients, distinguishable water bodies can be identified
based on their spectral characteristics. The NDW|1 is specifically designed
to define water body boundaries, differentiate between water, soil, and
vegetation, and assess water turbidity and pollution. It produces index
values between 0 and 1, representing water bodies at various depths and
contamination levels through a gradient of positive values (Eq. 4).

pGreen—pNIR_ pBand3—pBand8

NDWI=
pGreen+pNIR pBand3+pBand8

(C)

where, pGreen and pNIR represent the reflection coefficients of
electromagnetic radiation in the green and NIR spectral ranges,
respectively. MNDW!I enhances the visibility of open water bodies and
reduces noise from urban areas, vegetation, and soils (Li et al., 2022) in
Eq. 5.

pGreen—pSWIR _ pBand3-pBand11

MNDWI= =
pGreen+pSWIR pBand3+pBand11

®)

where, pSWIR represents the reflection coefficient of electromagnetic
radiation in the SWIR range. The right side of the expressions
corresponds to Sentinel-2 band numbers. Pixels were classified as
"water" if NDWI>0 or MNDWI>0.

2.5. Accuracy assessment of HEC GEO RAS and satellite image
water extent

To evaluate the fit of raster layers from SAR images against the raster of
overflowed zones recreated by Hec-RAS, we utilize two scales: feature
agreement statistics F1 and F2, as defined in equations 6-7 by Horrit et
al., (2007) and Di Baldasarre et al., (2009).

A

F1=
A+B+C

(6)
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A-B
F2 =
A+B+C

@)

In these equations, A represents the total inundated area correctly
predicted by the model (from the detected Sentinel-1 image), B is the area
overestimated, and C is the area underestimated. F1 ranges from O to +1,
while F2 ranges from -1 to +1. Higher values of F1 and F2 (greater than
0.5) indicate better model performance.

3. Results and discussion
3.1. HEC RAS simulation in steady state and unsteady state
scenarios

Ability to model steady and unsteady flow, along with powerful graphics,
has made Hec Geo Ras software one of the most practical tools in water
engineering. The Table 2 displays the results of calculating flood
discharge for various return periods with the most optimal distributions in
EASY-FIT model (Schittkowski, 2002), additionally, the RFFA results for
Doab Ghazanchi are presented in the last row of the Table 2. The changes
in cross-sectional area and average velocity of the Gharasoo River for
different return periods of discharge are shown in Fig. 6-a, b. Longitudinal
profiles of water surface elevation are among the valuable outputs of the
HEC-RAS model. Therefore, after running the flow simulation model, the

longitudinal profiles of water surface elevation changes for flood events
with DRP, were extracted and presented in Fig. 6c. The average
cumulative rainfall recorded at Kermanshah and Ravansar synoptic
stations between 31/03/2019 and 2/04/2019, shown in Fig. 7a, was used
for runoff simulation. The upstream basin of the study area covers 4590
sq km, with a concentration time of 30 h. A CN value of 73 was identified
as optimal for the analysis (Fig. 3). The resulting hydrograph depicting the
flood caused by the rainfall event is displayed in Fig. 7-b (Hafezparast,
Gord, Ghobadian, 2025). The simulated SCS peak flood in Doab-
Ghazanchi was estimated at 860.25 m®/s (Fig. 7b). Findings indicated that
the 25-year peak flood, at 723.5 m®s using the RFFA method in Doab
Ghazanchi, is lower than the SCS method in this region.

3.2. Water level and velocity of flood in the Hec Geo Ras

HEC GEO RAS model simulated the variations in water level profiles for
steady and un steady states, including flow velocity, normal depth, critical
depth, and hydraulic parameters. Water level and velocity maps are
categorized into four and five groups in a GIS environment and shown in
Figs. 8a, b - 9a, b. The simulated water heights reached over 4 m in the
riverbed and between 1 and 2 m on the floodplain. In Kermanshah city,
the water level is estimated at 1 m, with a maximum height of 6 m and a
maximum velocity of 3 m/s.

Table 2. Predicted Discharge with the best distribution in hydrometric stations and RFFA in Doab-Ghazanchi area.

Return period, Year

Stations Best distribution > 3 5 0 5 50 100 200 500 1000
Doab merek Lognormal (3P) 33.8 51.7 80.9 128.6 2114 2915 389.5 507.9 700.7 878.3
Khersabad Lognormal (3P) 375 52.5 72.9 100.8 141.0 174.4 210.6 250.0 307.2 354.7
Hojatabad Frechet 3p 76.2 104.6 147.9 217.1 340.7 468.5 637.1 859.8 1268.3 1695.3
Pol-kohne log-logistic 3p 100.5 149.9 236.9 402.5 775.1 1256 2026.4 3263.6 6121.5 9849.6
Faraman log_person3 107.1 160.1 247.6 395.2 665.3 943.1 1302 1761.4 2563.9 3356.7
Doab-Ghazanchi RFFA 93.8 139.9 221.1 375.6 723.5 1172.3 1891.3 3046.1 5713.5 9193.1
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Fig. 6. The changes in cross-sectional area (a), average velocity (b) and longitudinal profiles of water surface elevation (c) of the

Gharasoo River for different return periods.
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Fig. 8. Water depths (a) and Water velocity (b) of the extent of flooded areas for 25y flood with Hec-Geo-RAS.

3.3. Satellite images processing in GEE

The images related to the Sentinel 2 satellite on 04/04/2019 that is on the
exact flooded day, was very cloudy due to the heavy rain, and with the
filters applied to remove the cloud, the quality was still not good that is
obvious in Fig. 10.

Landsat image was acquired on 15/04/2019 that was about 11 days after
flood but still it showed the flooded area that is clear in Fig.11. The
Sentinel 1 image from 06/04/2019, acquired 2 days post-flood and
unaffected by clouds, is more suitable for comparison with the Hec-Geo-
RAS model output. This image is shown in Fig.12 for further study in this
area.

3.4. Evaluating Hec-Geo-RAS simulation and satellite images

Sentinel-1 images on GEE are utilized for data processing, cloud and
speckle filtering, and automated water detection threshold (Parida et al.,

2021) in comparison to the Hec Geo Ras model. The maximum 25-year
flood for steady state conditions and the SCS flood hydrograph for
unsteady state scenarios are assessed using satellite imagery. Water
areas in the S1 satellite image and Hec Geo Ras SCS floodplain are
overlaid in a GIS environment, and the coefficients of A, B, and C are
extracted, as shown in Fig.13 and Table 3. F1 and F2 indices for the Max
SCS flood exhibited values of 0.73 and 0.72, indicating that the Hec-Geo-
RAS water plains were well-aligned with the S1 satellite images for
unsteady scenario. Conversely, the evaluation indices F1 and F2
indicated that the SCS flood in Non-state scenario overlapped more with
the satellite images compared to the 25y flood in steady state scenario.
Studies by Karkouti et al., (2010) on the flood of 19/03/1998, Jahandideh
et al, (2011) on the flood of 29/03/2005, and Jabbari et al., (2017)
estimating the maximum flood in the Ghazanchi area using Creager, HEC
HMS, SCS and probabilistic distribution methods indicate that the peak
flow ranges from 720 to 900 m%/s, aligning with this study.

Table 3. Evaluation Factors in steady state and unsteady state scenarios.

Lo Hec-Geo-RAS simulation A B C F1 F2
Satellite imagery - _
scenarios Number of pixels
Sentinel-1 Unsteady state 40896 211 15105 0.73 0.72
steady state 29786 9472 32646 0.41 0.28
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Fig. 9. (a) Water depth, and (b) water velocity of the maximum flood of the SCS method in the Hec-Geo-RAS.

Simulated water levels and velocities were measured during a flood,  velocities ranged from 1 to 4ms-1 in the Medjerda Basin in northern
with heights surpassing 4m in the riverbed and peaking at 6m with a  Tunisia. This data is important for assessing flood risks and can aid
maximum velocity of 3ms-1. A comparison to Ezzine et al., (2020) reveals  decision-makers in understanding factors such as height, velocity, and
strong agreement between Hec Geo Ras and the observed flood extents  flow duration.

seen in Sentinel-1 images. Water levels ranged from 1 to 6m, while
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Fig. 10. (a) Sentinel-2 acquired in March 2019 before flood, (b) NDWI and MNDW!1 in April 2019 after flood in the GEE platform in

the Gharasoo River.
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Issues concerning SAR images include signal scattering when
signals bounce off surfaces and sensors fail to pick them up. Dark areas
don't always mean flooded areas, and uncertainties can affect results.
Satellite images may not be available for all locations simultaneously,
causing a delay between flooding and image capture. SAR images
encounter challenges due to signal scattering during reflection and
reception. We employed the thresholding method to extract flooded areas
from pre- and post-flood Sentinel-1 images, achieving agreement values
of 72% and 73% for VH polarizations. This approach is straightforward,
quick, and reliable for flood mapping. In comparison with studies on
optimal thresholds for identifying water areas, Elkhrachy et al., (2021)
reported a similarity of 74.2% to 89.7% between simulated HEC-RAS

water areas and SAR data, while Hong Quang et al., (2020) noted the
highest agreement of 88.3% between water levels and calibrated water
extent using HEC-RAS 2D. Ezzin et al., (2020) evaluated the performance
of HEC-RAS using S1 satellite images by calculating F1 and F2 values,
which both exceeded 0.5. Afzal et al., (2022) discovered that proper
calibration and validation of HEC—RAS inundation modeling with in situ
flood extent is crucial. Achieving this during a catastrophic flood may be
challenging. However, using MODIS and Landsat data for flood extent
comparison has proven beneficial. The calibration and validation results
show strong agreement between simulated and observed flood extents in
most areas, with the model achieving an accuracy of 0.64 for F1 and 0.87
for F2.
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Fig. 13. Extraction of A, B, and C components of F-statistic scales between Hec-Geo-RAS and SAR satellite image water areas for maximum
SCS flood.

4. Conclusions

In this research, a flood event simulated in April 2019 focusing on the
Doab-Ghazanchi section upstream of Kermanshah city in western Iran.
Peak flood and flood hydrograph were calculated using the RFFA and
SCS methods and simulated in Hec Geo Ras for steady-state and
unsteady-state scenarios. The results indicated that the 25-year flood and
SCS peak flood values were estimated to be 723.5 m3/s and 860 m3/s,
while the maximum water level and velocity were modeled at around 6 m
and 3 m/s. GEE Satellite imagery analysis revealed that on the specific
day of the flood, 04/04/2019, the Sentinel 2 images were heavily obscured
by clouds caused by intense rain. Despite efforts to eliminate the cloud
cover using filters, the image quality remained inadequate. Landsat
images obtained on 15/04/2019, approximately 11 days after the flood,
were compared. Considering this, the Sentinel 1 images from 06/04/2019,
captured just two days after the flood and free from cloud interference,
offer a more appropriate basis for comparison with the Hec-Geo-RAS
model results. Assessing the Hec-Geo-RAS model with S1 satellite
images using F1 and F2 indices showed values of 0.73 and 0.72 for the
max SCS flood, indicating good alignment with S1 flood plain. For the 25-
year flood in a steady state scenario, the values were 0.41 and 0.28,
reflecting poor alignment. The analysis suggests that the unsteady state
scenario in Hec-Geo-RAS, which employs the flood hydrograph to identify
flood plains, is more appropriate than using peak flood value in the RFFA
method for steady state scenarios. The results demonstrated the critical
importance of properly simulating HEC-RAS inundation modeling with in
situ flood extent needs. However, this may be difficult to accomplish
during a catastrophic flood event. The use of satellite-based flood extent
proved to be valuable for comparing simulated and actual floodplains.
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