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 This study evaluates the performance of Artificial Neural Networks (ANNs), Gene 
Expression Programming (GEP), and the HEC-HMS models in assessing the 
impacts of climate change on runoff in the Kasilian catchment, northern Iran. Daily 
data from 2007 to 2021 were divided into calibration (2007–2018) and validation 
(2018–2021) periods. The results indicate that GEP and ANN models surpassed 
the HEC-HMS model across all performance metrics, including RMSE and NSE, 
when applied individually. Furthermore, hybrid models, integrating HEC-HMS with 
GEP and HEC-HMS with ANN, exhibited superior performance compared to 
individual machine learning (ML) or HEC-HMS models. Input variables 
(temperature and rainfall) were generated using LARS-WG software, incorporating 
five climate models and the SSP585 scenario for future climate change studies. 
Additionally, these hybrid models were used to forecast runoff changes for the 
observed period (2007-2018) and future periods (2031-2050 and 2051-2070). The 
results show a rise in average annual precipitation, extreme precipitation events, 
and precipitation intensity, implying a higher likelihood of flooding and erosion in 
the future for the Kasilian Catchment and similar small catchments in north of Iran. 
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1. Introduction 
 
Accurately predicting runoff by considering rainfall, evaporation, and 
other hydrological factors is a vital aspect of water resources 
engineering. Recently, Artificial Neural Networks (ANNs) and Genetic 
Programming (GP) have gained significant popularity in this domain 

(Kisi, Shiri, and Tombul, 2013). Valipour et al. (2013) employed Auto-
Regressive Integrated Moving Average (ARIMA), autoregressive 
moving-average (ARMA), and artificial neural network (ANN) 
techniques to forecast the inflow of the Dez Dam reservoir in Iran. They 
utilized monthly flow data from 1960 to 2007, with 42 years allocated 
for training and 5 years for testing. Their results revealed that an ANN 
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with a sigmoid activation function and 17 neurons in the hidden layer 
was the most effective model for predicting the inflow. In another study, 
researchers allocated 70% of the dataset for training purposes and the 
remaining 30% for testing. They applied an artificial neural network to 
data spanning from 1951 to 2006, covering fifty-five years. The 
evaluation revealed that the multilayer perceptron neural network 
outperformed the radial basis function. The study highlighted that both 
the two-day antecedent rainfall and the one-day antecedent discharge 
had a significant impact on runoff. The mean squared error values were 
0.8 for the training data and 0.75 for the testing data (Motamednia et 
al., 2015). In another research, Pashazadeh et al. (2020) compared 
three models of GEP, ANN, and Muskingum in predicting the outlet 
hydrograph in the floodway of Qarasu River. The GEP model has 
demonstrated superior performance in estimating the outlet hydrograph 
of river flow when compared to the Muskingum and ANN models. 
Chavoshi et al. (2013) applied artificial neural networks (ANNs) to 
predict flood events in the southern Caspian Sea catchment. They 
compared the results from the ANN model with those from a multiple 
regression model and found that the ANN model handled the 
complexity of hydrological problems more effectively. Among the 
various ANN architectures evaluated, the multilayer feed-forward 
backpropagation network using the Levenberg–Marquardt algorithm 
demonstrated the best performance. Aytek, Asce, and Alp (2008) 
compared artificial neural networks (ANNs) and evolutionary 
computation (EC) for modeling rainfall and runoff interactions. Aytek, 
Asce, and Alp (2008) discovered that evolutionary models, such as 
GEP and GP, performed better than ANN methods, including feed-
forward back-propagation (FFBP) and generalized regression neural 
network (GRNN). Wang et al. (2009) assessed several models for 
predicting monthly discharge time series. The study evaluated several 
models, including ARMA models, ANN, adaptive neural-based fuzzy 
inference systems (ANFIS), GP, and support vector machines (SVM). 
Their results demonstrated that the GP, ANFIS, and SVM models 
provided the most accurate forecasts. Azamathulla et al. (2011) 
investigated different modeling approaches for the stage-discharge 
relationship in the Pahang River. They evaluated ANN, GP, and GEP. 
Notably, the GEP model surpassed both ANN and GP, along with 
traditional models, in performance. Shiri et al. (2012) examined the 
effectiveness of three models— GEP, ANFIS, ANN —for forecasting 
daily streamflow. The study found that the GEP model significantly 
outperformed both the ANN and ANFIS models. Kisi, Shiri, and Tombul 
(2013) explored the modeling of rainfall-runoff processes using three 
distinct methods: ANNs, ANFIS, and GEP. Their research 
demonstrated that Gene Expression Programming (GEP) offers a 
viable and effective alternative to traditional models for accurately 
simulating the rainfall-runoff process. The previously mentioned studies 
suggest that evolutionary techniques, particularly Gene Expression 
Programming (GEP), surpass Artificial Neural Networks (ANNs) in the 
simulation and prediction of hydrologic models.  

Asadi and Santos (2022) developed a hybrid model by coupling 
HEC-HMS output with ANN for simulating daily discharge in the Kallada 
River basin, Kerala, India. The hybrid model showed better 
performance in simulating daily discharge and estimating yearly peak 
discharge compared to the individual HEC-HMS and ANN models. 
Gebremichael and Hailu (2024) evaluated the efficacy of HEC-HMS, 
ANN, and SVR models in predicting runoff in the upper Baro catchment, 
Ethiopia. The study found that while ANN outperformed HEC-HMS, 
integrating the outputs from HEC-HMS into machine learning models 
could potentially enhance prediction accuracy. 

Conceptual models, such as HEC-HMS, have been valuable for 
runoff estimation. However, they face challenges related to non-
uniqueness of parameter values and reliance on indirect data sources. 
Estimating these parameters, especially soil physics and vegetation 
physiology, can be difficult. Additionally, compensation effects between 
model parameters exist (Hajian, 2013). Furthermore, limited research 
has explored the use of Artificial Neural Networks (ANN) and Gene 
Expression Programming (GEP) in studying the effects of climate 
change on water resources. This area of research demands more 
attention, particularly due to the scarcity of field data. The current study 
aims to evaluate the accuracy of three models—Gene Expression 
Programming (GEP), Artificial Neural Network (ANN), and HEC-HMS—
in modeling rainfall-runoff processes. Additionally, it examines the 
impact of climate change on runoff in the Kasilian Catchment, 
emphasizing the models that exhibited superior performance. 
 
2.material and methods 
2.1. Study area   
 

This study centers on the Kasilian Catchment located in Mazandaran 
Province, northern Iran, spanning from 53°18′ to 53°30′E and 35°58′ to 
36°07′N (Fig. 1). The catchment area, which extends over 65.7 km² 
upstream of the Valikbon hydrometric station, flows northward into the 
Caspian Sea. The catchment’s longest flow path extends for 17.8 
kilometers. Around 80% of the catchment area is covered by forests, 
while the downstream areas have been cleared for agricultural use. The 
geological composition includes shale, sandstone, marl, and siltstone. 
Daily rainfall and temperature data are recorded at the Sangdeh 
meteorological station, and river discharge is monitored at the Valikbon 
station (Fig. 1). Between 1977 and 1996, the average annual rainfall 
was around 756 mm, and from 1980 to 1996, the average annual runoff 
was 229 mm (Hajian, 2013). 
 
2.2. HEC-HMS modeling of rainfall-runoff process 
 
HEC-HMS, created by the US Corps of Engineers, is extensively 
utilized for hydrological studies worldwide. This research employed the 
Thornthwaite method to calculate potential evapotranspiration (PET) for 
the HEC-HMS, ANN, and GEP models (see Table 1), given that only 
temperature data is available for the Kasilian Catchment. Despite this 
limitation, in climate change studies, uncertainties in PET have a lesser 
impact on simulated runoff than those stemming from different GCM 
types or projected future climate scenarios (Bae et al., 2011, Hajian, 
2013).  

 
Fig. 1. Outline map of the Kasilian Catchment. 

HEC-HMS requires 23 parameters to model hydrological 
dynamics within a catchment. Initial estimates for these parameters are 
refined through automated optimization using the Nelder-Mead method, 
aiming to minimize the difference between observed and computed 
runoff volumes (Scharffenberg and Fleming, 2010). In this research, 
primary parameter values were sourced from geology, soil, and land 
use maps, along with data from existing literature (Hajian, 2013). A 
conventional calibration-validation process was employed, where 
parameter optimization occurred during the calibration stage. For the 
calibration period (September 23, 2007, to March 20, 2018), the Nash 
and Sutcliffe coefficient was -0.293, while for the validation period 
(September 23, 2018, to September 22, 2021), it was 0.060. 
Additionally, the RMSE coefficient during calibration was 0.625, and 
during validation, it was 0.870. This poor result is due to seasonal 
variations in parameter values and the inherent uncertainty associated 
with these parameters. Additionally, HEC-HMS is unable to model the 
rainfall-runoff process seasonally. 

 
2.3. ANN modeling of rainfall-runoff process 
 
Human brains use over 10 billion neural cells to process information 
and solve problems. These neurons, though limited individually, 
collectively perform complex computations and pattern recognition. 
Neurons learn from their environment and form connections, consisting 
of dendrites (input), cell bodies (processing), and axons (output). 
Inspired by this biological structure, Artificial Neural Networks (ANNs) 
mimic brain neurons for tasks like classification, pattern recognition, 
and regression. In ANNs: 1. Inputs represent dendrites.2. Weights 
model synaptic spaces.3. Activation functions simulate cell body 
influence. 4. Outputs correspond to axons. 
Hidden layers between input and output layers enable ANNs to learn 
and model complex patterns through multiple processing stages. Each 
artificial neuron is a mathematical representation involving inputs, 
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weights, thresholds, activation functions, and outputs (Romański et al., 
2017). This process can be mathematically represented as (Ömer and 
Ayan 2015): 

𝑦
𝑖
= 𝑓

𝑖
(∑ 𝑤𝑖𝑗 × 𝑥𝑗 + 𝜃𝑖

𝑛
𝑗=1 )                                                        (1)   

where, (𝑦
𝑖
) is the output, (𝑤𝑖𝑗) are the weights, and (𝜃𝑖) is the bias. 

ANNs excel in regression tasks by predicting continuous values and 
modeling complex input-output relationships, making them ideal for 
practical applications. Among the various ANN architectures, the feed-

forward back propagation model with the Levenberg–Marquardt 
algorithm for optimizing the weights during the training process has 
demonstrated superior performance (Bakhshaei et al., 2021). For many 
nonlinear problems, a single hidden layer is often adequate. 
Additionally, research indicates that incorporating more than two hidden 
layers does not significantly enhance performance (Pashazadeh and 
Javan, 2019; Bakhshaei et al., 2021; Kisi, Shiri, and Tombul, 2013). The 
precipitation and potential evapotranspiration estimated by 
Thornthwaite method over catchment is computed as a main input to 
the ANN and GEP models.  

 
Table 2. The performance assessment of various ANN models with differing architectures. 

 NSE NSE RMSE RMSE 

Model number 
detailed in 

Table 1 

Activation 
function 

Number of neurons in 
hidden layer 

Train test train test 

1 

Tansig 10 0.166 -0.0015 
 

0.5018 0.898 
 Tansig 3 0.1477 

 
-0.0025 

 
0.5073 

 
0.899 

 Purelin 10 0.1082 
 

-0.0021 
 

0.519 
 

0.899 
 Purelin 3 0.119 

 
0.0109 

 
0.5158 

 
0.893 

 

2 

Tansig 10 0.165 
 

0.03 
 

0.502 
 

0.896 
 Tansig 3 0.181 

 
0.039 

 
0.497 

 
0.88 

 Purelin 10 0.130 
 

0.054 
 

0.512 
 

0.873 
 Purelin 3 0.139 

 
0.019 

 
0.509 

 
0.889 

 

3 

Tansig 10 0.078 
 

-0.078 
 

0.527 
 

0.932 
 Tansig 3 0.084 

 
-0.0019 

 
0.526 

 
0.899 

 Purelin 10 0.152 
 

0.502 
 

0.505 
 

0.874 
 Purelin 3 0.15 

 
0.028 

 
0.506 

 
0.885 

 

4 

Tansig 10 0.187 
 

-0.031 
 

0.495 
 

0.912 
 Tansig 3 0.176 

 
0.034 

 
0.498 

 
0.882 

 Purelin 10 0.231 
 

0.065 
 

0.481 
 

0.868 
 Purelin 3 0.188 

 
0.048 

 
0.495 

 
0.876 

 

The ANN model used in this study comprises three neuron layers: 
an input layer, a hidden layer, and an output layer. In this study, we 
enhanced the ANN’s performance by normalizing the input data during 
preprocessing. We employed the min-max method to scale the data to 
a specific range, typically [0, 1], which accelerates the training process 
and improves model performance. To improve the overall performance 
of the artificial neural network (ANN) model for this particular 
application, a sensitivity analysis was conducted. This analysis involved 
exploring various ANN structures, including different network types, 
training functions, hidden layer neuron counts, and transfer functions. 
Table 2 presents the performance evaluation of various ANN models 
using the NSE and RMSE statistical indices. 
 
2.4. GEP modeling of rainfall-runoff process 
 
Gene Expression Programming (GEP) is a type of algorithm that 
creates models by copying how evolution and natural selection work. In 
GEP, computer programs are shown as tree-like structures that can 
change and improve over time. These programs are stored in fixed-
length sequences, called chromosomes, which act like a blueprint 
(genotype). The tree structures that result from these sequences are 
called expression trees and represent the actual solution (phenotype). 
This setup helps GEP to find and refine solutions to different problems 
by changing the size, shape, and content of the expression trees 

(Ferreira, 2006). In GEP modeling, selecting an appropriate fitness 
function is the initial step (Kisi, Shiri, and Tombul, 2013). Various default 
functions from GeneXpro, including addition, subtraction, multiplication, 
division, power, square root, exponential, natural logarithm, absolute 
value, inverse, cube root, sine, cosine, tangent, cotangent, arcsine, 
arccosine, arctangent, and additional linking functions, were utilized to 
build the GEP models. Table 3 presents the performance evaluation of 
different GEP models using the NSE (Nash-Sutcliffe Efficiency) and 
RMSE (Root Mean Square Error) statistical indices. 

 
2.5. Hybrid modelling approach (Integrating machine learning (ML) 
with conceptual models) 
 
Integrating conceptual models with machine learning (ML) techniques, 
such as artificial neural networks (ANN) or gene expression 
programming (GEP), enhances runoff prediction accuracy. Utilizing the 
streamflow estimates from the conceptual model as inputs for machine 
learning models like ANN and GEP will enhance the accuracy of the 
forecasted runoff. Studies, such as those by Farfan et al. (2020) and 
Hitokoto and Sakuraba (2020), have demonstrated the effectiveness of 
this method, resulting in markedly improved streamflow predictions. 
These examples highlight the potential of combining conceptual and ML 
models for more accurate and reliable runoff predictions.

 
Table 3. The performance evaluation of different GEP models 

Model number 
detailed in Table 1 

NSE NSE RMSE RMSE 

Train Test Train Test 

1 0.101 
 

0.022 
 

0.521 
 

0.888 
 2 0.143 

 
0.020 

 
0.508 

 
0.889 

 3 0.078 
 

-0.019 
 

0.527 
 

0.906 
 4 0.223 

 
0.031 

 
0.484 

 
0.883 

 

Table 1. Different combinations of input variables for training and testing of the models 

Model number  Input combination output 

1  Pt, Pt-1, ETt, ETt-1 Qt 
2  Pt, Pt-1, Pt-2, ETt, ETt-1, ETt-2 Qt 
3  Pt, Pt-1, Pt-2, Pt-3, ETt, ETt-1, ETt-2, ETt-3 Qt 
4  Pt, Pt-1, Pt-2, Pt-3, Pt-4 Qt 
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Table 4. The performance evaluation of different hybrid models. 

 
Integration HEC HMS & GEP (*) 

Integration HEC HMS & 
ANN (3,3,1) with tansig activation function 

 NSE NSE RMSE RMSE NSE NSE RMSE RMSE 

Hybrid 

model 

train test train test train test train test 

0.291 0.133 0.243 0.836 0.274 0.163 0.476 0.821 

The performance of the ANN model, integrated with the calibrated 
HEC-HMS model from section 2.2, was tested using hidden layers with 
3 and 10 neurons, evaluating two activation functions: purelin and 
tansig. The results indicate that the tansig activation function with 3 
neurons in the hidden layer provides better model performance. 
Because of space limitations, the paper does not include the results of 
other configurations, such as different activation functions and varying 
numbers of hidden layer neurons (see Table 4). The inputs to the ANN 
model include discharge estimates from HEC-HMS (Qt), as well as 
these estimates with one lag (Qt-1) and two lags (Qt-2), representing the 
discharge from previous days. According to Table 4, integrating Artificial 
Neural Networks (ANN) and HEC-HMS, as well as Genetic 
Programming (GEP) and HEC-HMS, outperformed using Machine 
Learning (ML) or HEC-HMS alone. The best performance was achieved 
by a single hidden layer neural network using the tansig activation 
function and the Levenberg–Marquardt learning algorithm. For climate 
change investigations, the optimal ANN architecture was identified as 
ANN (3,3,1), which includes 3 input neurons, 3 hidden layer neurons, 
and 1 output neuron. 

Integrating HEC-HMS with Gene Expression Programming (GEP) 
offers an advantage: GEP can provide a clear mathematical 
relationship between input and output variables, a feature not present 
in ANN and ANFIS models (Kisi, Shiri, and Tombul, 2013). The 
corresponding GEP expression for Model (*) in Table 4 is: 

𝑌 = acot⁡(cos (√((𝐺1𝐶0 × 𝑑[2]) × 𝐺1𝐶1)
𝑡𝑎𝑛𝐺1𝐶43

) +

√1 − √((𝐺2𝐶1 − 𝑑[0]) + 𝐺2𝐶8 + (𝑑[2] − 𝑑[0]))
33

+

arctan⁡(arctan(arctan(arctan(arctan(arctan(sin(𝐺3𝐶2)))))))              (2) 

 
G1C1 = -2.85716229743339; G1C4 = 6.87689168980987; G1C0 = -
0.19608447523423; G2C8 = 3.11519563621235; G2C1 = 
0.787598787273076; G3C2 = -9.69426648762474; d [0] = discharge 
estimates from HEC-HMS (Qt), d [2] = discharge estimates from two 
days earlier (Qt-2). 
Genetic operators for the highest-performing model, Model * from Table 
4, are as follows: chromosome count: 30, head size: 8, gene count: 3, 
linking function: addition, fitness function: RMSE, Mutation rate: 
0.00138, inversion rate: 0.00546. 
The sensitivity analysis in the GEP model indicated that the model is 
highly sensitive to d0 and, to a lesser extent, to d2 (Fig. 2). 
 

 
Fig. 2. Sensitivity analysis conducted in the GEP model. 

2.6. Climate data for future scenarios 
 
We utilized LARS-WG due to its superior performance and availability 
(Semenov et al.,1998). LARS-WG was employed to downscale GCM 
outputs for the Sangdeh station area, addressing the constraints of 
coarse-scale GCM data. To evaluate LARS-WG’s performance, we 
reproduced observed daily data (rainfall, minimum and maximum 
temperature) from Sangdeh station (1 January 1985-31 December 
2005) and generated 300 years of synthetic data. The statistical 
characteristics (mean and variance) of the observed data closely 
matched those of the synthetic data, demonstrating LARS-WG’s 
effectiveness in generating observed data for the Kasilian Catchment. 
Using Sangdeh station's coordinates, LARS-WG created daily datasets 
for rainfall and temperature from all six models (ACCESS-ESM1-5, 
CNRM-CM6-1, GFDL-ESM4, HADGEM3-GC31-LL, MPI-ESM1-2-LR, 
MRI-ESM2-0) under one scenario (SSP585) for the periods (2031–
2050 and 2051–2070). The SSP585 scenario is more suitable for 
modeling climate impacts in Iran because it aligns with the country’s 
high fossil fuel consumption and slower renewable energy adoption. It 
projects more frequent and severe extreme weather events, which Iran 
is already experiencing. The scenario also provides a realistic 
assessment of future water scarcity, agricultural impacts, and shifts in 
biodiversity and ecosystems, making it crucial for planning and 
adaptation efforts in Iran. With climatic data (e.g., rainfall and 
temperature) for current and future conditions, the corresponding runoff 
can be determined for each condition to facilitate comparison. Typically, 
the runoff data for the future periods (2031-2050 and 2051-2070) 
should be compared with the runoff derived from the recorded data 
(2007-2018). Figs. 3 and 4 demonstrate improved model performance 
during the calibration period when integrating HEC-HMS with ANN and 
GEP models. 
 
3. Results and discussion 
3.1. Future Projections and Addressing Uncertainty from Diverse 
Climate Model Predictions 
 
Different climate models yield diverse rainfall and runoff patterns 
(Semenov and Shewry, 2011). Studies in Iran show varying results: 
some models predict increased mean annual rainfall in northern Iran, 
while others forecast decreases in specific areas like Mazandaran in 
northern Iran (e.g., Abbaspour et al., 2009; Babaeian et al., 2007). 
Utilizing multiple climate models is crucial for precise climate change 
impact assessments. Two box plots were created using the future mean 
annual values of climatic variables (rainfall) and hydrological variables 
(runoff) from all General Circulation Models (GCMs) to illustrate the 
range of uncertainty in the predictions. These future values can be 
compared with historical data. The box plots display the 25th and 75th 
percentiles, the median (50th percentile), and the minimum and 
maximum values (Semenov and Shewry, 2011). Figs. 5 and 6 show 
annual changes in rainfall and runoff for two future periods. 

During the calibration period from 2007 to 2018, the mean annual 
rainfall was 788 mm, while the mean annual runoff was 175.6 mm. Figs. 
5 and 6 illustrate that the median (50th percentile) of mean annual 
rainfall from various climate models is projected to increase in the future 
under the SSP585 scenario compared to the base period (2007-2018). 
Conversely, the median (50th percentile) of mean annual runoff from 
these models is expected to decrease under the SSP585 scenario 
relative to the same base period. Rising temperatures and increased 
evapotranspiration are expected to reduce median annual runoff.  
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Fig. 3. The simulated (red) and observed (blue) hydrographs for the calibration period using Sangdeh rainfall station and integration of HEC 

HMS & ANN (3,3,1) models (with tansig activation function). 
 

 
Fig. 4. The simulated (red) and observed (blue) hydrographs for the calibration period using Sangdeh rainfall station and integration of HEC 

HMS & GEP models. 
 

Heavy rainfall is defined as daily precipitation amounts exceeding 
the 95th percentile of daily rainfall data for a specific period. For the 
observed period, the 95th percentile of wet days’ precipitation was 
determined to be 25.81 mm/day. The frequency of wet days with heavy 
rainfall in the Kasilian Catchment was evaluated for the base period and 

two future periods under the SSP585 scenario (Fig. 7). During the 
observed period, there were 33 wet days with heavy rainfall. Projections 
indicate an increase in extreme precipitation events in future periods, 
as evidenced by the comparison of the median values in the boxplot 
and the number of wet days with heavy rainfall in the observed period. 

 
Fig. 5. Box plots constructed from the mean annual rainfall values 

obtained from different climate models for SSP585 scenario and future 
period. 

 
Fig. 6. Box plots constructed from the mean annual runoff values 

obtained from different climate models for SSP585 scenario and future 
period. 
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Fig. 7. Number of wet days for all future periods and climate models with precipitation > 95th percentile of the observed precipitation (2007– 
2018). 

 
Fig. 8. Monthly Liquid Water Equivalent (LWE) thickness changes in the Kasilian Catchment from 2007 to 2016 Using GRACE and GEE Data. 

 
Higher greenhouse gas levels may lead to more annual rainfall 

and extreme weather events (SWCS, 2003). Bae et al. (2008) projected 
an increase in mean annual rainfall for all catchments in South Korea 
for the period 2061-2090 compared to 1971-2000, but a decrease in 
mean annual runoff due to higher evapotranspiration. Shifteh Some’e 
et al. (2012) found that in Iran, annual rainfall increased by 0-10% from 
1967 to 2006 in the northern regions. Rainfall in northern Iran is 
influenced by Siberian anticyclones. Weaker winter high-pressure 
systems have led to reduced winter rainfall, while stronger spring 
systems have increased spring rainfall, possibly leading to increased 
flooding in the southern Caspian Sea coastal region, where Kasilian is 
situated (Rasoli et al., 2012). 

Fig. 8, derived from Google Earth Engine (GEE) for the Kasilian 
Catchment, presents monthly Liquid Water Equivalent (LWE) thickness 
measurements from CSR, GFZ, JPL, and the GRACE satellite 
spanning January 2007 to December 2016. The data exhibits distinct 
seasonal patterns, with elevated LWE values in spring and summer and 
reduced values in fall and winter. Over the observed period, a general 
decline in LWE thickness is noted, particularly in the CSR and GFZ 
datasets. Despite variations in absolute values, the datasets display 
consistent trends. As Fig. 8 shows, currently, we are experiencing a 
decrease in underground water levels. In the future, increased mean 
rainfall, possibly due to more convective rainfall events, might lead to 
higher surface runoff and reduced groundwater infiltration. This is 
expected to significantly decrease the future decline in groundwater 
levels. 
 
4. Conclusions 
 
The GEP model outperformed the ANN and HEC-HMS models in 
modeling rainfall-runoff processes. However, both GEP and ANN 
models demonstrated similar accuracy in predicting runoff. By using the 
hybrid approach of incorporating streamflow series forecasts from 
conceptual models as inputs for ML models like ANN or GEP, it 
represents an advancement in hydrological modeling. This method not 
only improves the accuracy of runoff predictions but also proves highly 

useful for assessing the effects of climate change on water resources, 
particularly runoff. Climate change in the Kasilian Catchment and 
northern Iran could lead to more extreme rainfall events and an 
increase in mean annual rainfall. However, higher evapotranspiration 
may result in decreased annual runoff. The rise in mean rainfall might 
be driven by these extreme events, potentially causing more flooding 
and erosion in smaller catchments and reducing groundwater recharge 
in northern Iran. To mitigate flooding, erosion, and enhance 
groundwater recharge in mountainous forested areas experiencing 
deforestation, such as the Kasilian catchment near the catchment’s 
outlet, strategies include reforestation to stabilize soil and absorb 
rainfall, wetland restoration to act as natural water filters and flood 
buffers, and establishing riparian buffers along waterways. Improved 
agricultural practices like contour farming, cover crops, and terracing 
can reduce runoff, while water management techniques such as 
rainwater harvesting, infiltration basins, and check dams help managing 
stormwater. Soil conservation measures like mulching and no-till 
farming further reduce erosion. Engaging local communities through 
awareness programs and participatory planning ensures successful 
implementation.  
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