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 Cost-effective dye wastewater treatment approaches are critically required for the 
long-term sustainability of textile industries. To fill the gaps, multiple high-potential 
adsorbents derived from biomass have been proposed. For this purpose, this study 
was conducted to present an applicable and cost-effective biochar synthesized 
from cow dung to remove methylene blue from the aqueous solutions. The potential 
of cow dung-based biochar was optimized under various pH, biochar dose, 
methylene blue concentration, contact time, and temperature. The maximum 
removal was 96% achieved at optimum conditions, 20 mg/l methylene blue 
concentration, 0.2 g biochar dose, pH of 6, and 90 min contact time at ambient 
temperature. The methylene blue adsorption process followed the Freundlich 
isotherm (R2=0.9827) and pseudo-second-order (R2=0.999) kinetic models, 
implying multilayered adsorption on the heterogenous surface and chemisorption 
mechanism, respectively. Furthermore, the adsorption process was spontaneous 
and exothermic due to negative Gibbs free energy (ΔG0) and enthalpy (ΔH0) with 
the reduction at randomness of methylene blue molecules and adsorbent 
interaction based on negative entropy (ΔS0). Regarding the high efficiency of cow 
dung-based biochar to adsorb methylene blue, it is recommended that further 
investigations consider the biochar activation and functionalization intending to 
upgrade its adsorption capacity. 
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1. Introduction 

 
The increasing release of dyes into the environment due to the 
expansion of industrial activities is one of the critical challenges at the 
global level (Li et al., 2017). Regarding the detrimental effects of dyes 
on human health and aquatic life, the removal of dyes from wastewater 
before discharge into the natural habitat is indispensable (Ahmad et al., 
2020a). Methylene blue, methyl orange, rhodamine B, crystal violet, 

Congo red, and diffuse violet produced from azo, thioquinone, and 
xanthan are the most significant and toxic dyes in industrial and non-
industrial effluents. They are non-biodegradable and mutagenic, 
hindering sunlight penetration into the water and damaging aquatic 
organisms (Valderrama et al., 2010; Bayahia, 2022). Successive 
exposure to methylene blue as a cationic molecule leads to sensory 
system problems, skin sensitivities, and cardiovascular and human 
respiratory damage (Udayakumar et al., 2021). Therefore, dye 
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concentrations in the effluent should be managed efficiently to avoid 
environmental crises (Putranto et al., 2022).  

Advanced oxidation processes, adsorption, membrane filtration, 
coagulation, and ion exchange have been proposed for dye removal. 
However, adsorption methods are at the heart of consideration due to 
their versatility, adjustability, and wide variety of available adsorbents 
(Baloo et al., 2021). The efficiency of the adsorption process strongly 
depends on the adsorbent characteristics, wastewater composition, 
and the analyte type (Misran et al., 2022). Carbonized char as an 
applicable adsorbent can adsorb dyes through chemical or physical 
bonding on the surface. The adsorption quality is related to pore 
volume, surface area, pore diameter, and size distribution. A slight 
change in these characteristics considerably increases the char 
adsorption capacity (Ofgea, Tura, and Fanta, 2022).  

The char synthesis from natural and low-cost agricultural waste 
such as orange peel, banana peel, peanut peel, lemon peel, coconut 
shell, and bamboo branches has been conducted for dye removal 
(Yusop et al., 2021). Biochar is a high-potential material produced from 
different available biomass (Yusop, Aziz, and Ahmad, 2022). The 
biochar porosity captures the dye molecules and can be regenerated 
accordingly (de Souza et al., 2022). The morphology and size 
distribution of the pores on the surface affects the adsorption rate 
(Alshekhli et al., 2020).  

Cow dung is a cost-effective and readily available biological 
resource. Traditional applications of cow dung such as burning as fuel, 
mosquito repellants, and cleaning agents are already presented 
(Saraswat, Demir, and Gosu, 2020). The recent development of cow 
dung is attributed to biofuel production or environmental pollution 
management. Cow dung is also a practical alternative for the adsorption 
process because of its affordability and the possibility of recovery, mass 
production, and availability (Iwuozor et al., 2022). On the other hand, 
cow dung is used to remove pollution due to its high carbon content, 
suitable porosity, and high efficiency (Jain et al., 2022). Notably, the 
dung of horses, cows, sheep, and chickens contains organic 
substances, enriching farm soils (Pandey et al., 2021). It is animal 
manure, and its properties lead to increased permeability and water 
retention, improved aeration, and stimulating the biological activity of 
the soil (Iwuozor et al., 2022).  

According to the limited investigations in terms of cow dung 
adsorption potential, the present study was conducted to 
comprehensively evaluate the cow dung's capability and capacity to 
remove methylene blue from aqueous solutions. The impacts of 
temperature, contact time, methylene blue concentration, biochar dose, 
and pH on the biochar performance were also considered to attain the 
optimum conditions. Isotherm, kinetic, and thermodynamic modeling 
were also applied to analyze the adsorption mechanism. The results of 
this study can provide an innovative pathway toward green sustainable 
development. 
 
2. Materials and methods 
2.1. Sample collection 
 
Cow dung was collected from industrial cattle farms and dried in an 

oven for 24 hours at a temperature of 110 C and then powdered 
(Pandey et al., 2021). The elemental analysis showed the amount of 
carbon, nitrogen, sulfur, and hydrogen as 31.19%, 2.41%, 0.711%, and 
3.66%, respectively. 

 
2.2. Biochar preparation 
 
20 g of as-prepared powder was pyrolyzed in the furnace (TF5/25-

1250) for one hour at a temperature of 500 C and a heating rate of 10 
ml/min under the nitrogen gas flow with a pressure of 100 ml/min 
(Saraswat, Demir, and Gosu, 2020). 

 
2.3. Biochar characterization 
 
The elemental analysis was carried out using an elemental analyzer 
(Flash EA 1112, USA). Field scanning electron microscopy analysis 
(SEM, Model: FEIESEM QUANTA200) was applied to determine the 
size and morphology of the cow dung-based biochar. Fourier-transform 
infrared spectroscopy (FTIR; Thermo Nicolet Avatar 370 FTIR, USA) 
was also performed to assess the surface functional groups of biochar.  

 
2.4. Optimization of methylene blue removal 
 
The operational parameters including temperature, contact time, 
methylene blue concentration, biochar dose, and pH were selected to 
optimize methylene blue removal using the one-at-a-time method 

(Ahmad et al., 2020a; Bayahia, 2022). The biochar potential for 
methylene blue removal was evaluated at pH values of 4, 6, 8, 10, and 
12 with a biochar dose of 0.2 g, contact time of 1 hour, and methylene 

blue concentration of 10 mg/l at a temperature of 25 C (Ahmad et al., 
2020a). Then, the experiment was performed at a biochar dose of 0.2, 
0.3, 0.5, 0.7, and 1 g, while pH, methylene blue concentration, 

temperature, and contact time were 6, 10 mg/L, 25 C, and 1 h, 
respectively. Methylene blue concentration was optimized at 5, 10, 20, 

50, and 100 mg/l at a contact time of 1 h, temperature of 25 C, biochar 
dose of 0.2 g, and pH = 6. The experiment was repeated at the contact 
time of 15, 30, 60, 90, and 120 min with 0.2 g biochar dose, at a 

temperature of 25 C, optimum methylene blue concentration of 20 
mg/l, and pH= 6. Finally, the biochar capability in methylene blue 

removal was assessed at the temperature of 10, 15, 20, 30, and 40 C 
under pH=6, 0.2 g biochar dose, 90 min optimum contact time, and 20 
mg/l methylene blue concentration. The experiments were carried out 
in three replicates. The adsorption capacity and removal percentage 
were calculated using the following formulas: 

Qe = (Ci − Cf) ×
V

M
                                                                             (1)   

A% =
(Ci−Cf)

Ci
∗ 100                                                                              (2) 

where, Qe is adsorption capacity. Ci and Cf denote primary and final 
methylene blue concentrations. V and M are the solution volume and 
biochar dose, respectively. A also indicates the removal percentage. 

 
2.5. Isotherm modeling  
 
Adsorption characteristics are expressed by adsorption equilibrium 
isotherms (Vyawahare et al., 2022). Adsorption isotherms are 
invaluable parameters indicating adsorbate mobility from the bulk 
solution to a solid phase at a constant pH and temperature (Nowrouzi, 
Younesi, and Bahramifar, 2018; Peer, Bahramifar, and Younesi, 2018). 
Moreover, when adsorbate concentration in aqueous media is balanced 
with the adsorbed ones on the adsorbent, the equilibrium condition is 
established (Ayawei, Ebelegi, and Wankasi, 2017). Langmuir and 
Freundlich isotherm models were used in this study to specify the 
adsorption of methylene blue molecules on cow dung-based biochar. 
Langmuir presents the adsorption isotherm based on the equality of 
adsorption and desorption rates as follows (Majd et al., 2022): 

𝐶𝑒

𝑞𝑒
=

1

𝑞𝑚
𝑐𝑒 +

1

𝑞𝑚𝑏
                               (3) 

where qe and qm denote the equilibrium and maximum adsorption 
capacity (mg/g), respectively. b depicts the Langmuir constant and Ce 
is the equilibrium concentration of adsorbate (mg/L). The basic 
characteristic of the Langmuir isotherm model is the dimensionless 
constant called RL (Langmuir separation factor), which is defined by the 
following equation: 

RL =
1

(1+bC0)
                                                                                      (4) 

where, b and C0 are the Langmuir constant and the initial adsorbate 
concentration (mg/L), respectively. RL indicates the type of isotherm as 
irreversible (RL=0), favorable (0<RL<1), linear (RL=1), and unfavorable 
(RL>1) (Latour, 2015). Freundlich isotherm is based on multi-layered 
and heterogeneous adsorption of the substance on the absorbent and 
is described as follows (Rajahmundry et al., 2021):  

Lnqe = LnKF +
1

n
LnCe                                                                            (5) 

where, kF and 1/n denote the Freundlich constant and exponent, 
respectively. The index 1/n shows the Freundlich intensity parameter 
and the experimental conditions are favorable when 1/n<1. 
 
2.6. Adsorption kinetics 
 
To determine the optimal contact time and predict the speed of the 
adsorption process, adsorption kinetic models were investigated 
(Gorissen et al., 2020). Kinetics equations manifest the adsorption 
mechanism and contributed processes such as surface, intermolecular, 
and chemical adsorption as well as diffusion (Li et al., 2022). The 
shorter the contact time in the adsorption process, the higher the 
reaction speed, which is cost-effective from an economic point of view 
(Liu et al., 2020). The pseudo-first-order kinetic model elucidates that 
the changes in the adsorption rate with time are proportional to the 
unoccupied sites on the surface of the absorbent (Song et al., 2020). 
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ln(𝑞𝑒 − 𝑞𝑡) = 𝑙𝑛𝑞𝑒 − 𝑘1𝑡                      (6) 

where, k1 shows the pseudo-first-order rate constant (1/min) and qt 
depicts the adsorption capacity at time t. The pseudo-second-order 
kinetic model assumes that chemical adsorption controls the adsorption 
phenomenon and the rate of adsorption site occupation is related to the 
square of the unoccupied sites (Hu et al., 2020). 

𝑡

𝑞𝑡
=

1

𝐾2𝑞𝑒2
2 +

1

𝑞𝑒2
𝑡                                                                                  (7) 

where, k2 is the pseudo-second-order constant rate and t is the time 
(min).  
 
2.7. Adsorption thermodynamics 
 
Thermodynamic parameters including Gibbs free energy changes 

(ΔG), standard enthalpy (ΔH), and standard entropy (ΔS) can be 
obtained using the following equations (Shukre et al., 2022): 

∆𝐺0 = −𝑅𝑇𝐿𝑛𝐾𝑑                                                                                  (8)  

∆𝐺0 = ∆𝐻0 − 𝑇∆𝑆0                                                                              (9)     

𝐿𝑛𝐾𝐷 = −
∆𝐻0

𝑅𝑇
+

∆𝑆0

𝑅
                                                                             (10)  

where, R is the global constant of gases with a value of 8.314 J/K.mol. 
T is the absolute temperature (K), and Kd is the equilibrium constant 
(Brandani, 2022). 
 
3. Results and discussion 
3.1. Characterization 
 
The morphology of the biochar prepared from cow dung was 
investigated using SEM analysis. Fig. 1 shows that the surface of 
synthesized biochar is thick and porous with small holes. The FTIR 
spectrum of cow dung-based biochar is exhibited in Fig. 2. As can be 
seen, broad peaks at 3429.32 cm-1 and 3126.08 cm-1 indicate the O-H 
stretching vibration (Xiu et al., 2020). The weak absorption peak in 3310 
cm−1 is the N-H bond of the stretching (Tang et al., 2021). The peak at 
1638.82 cm-1 is related to the C꞊O bond (Patty, Loupatty, and 
Sopalauw, 2017). The sharp peaks at 1453.27 cm-1 and 1400.19 cm-1 
correspond to the asymmetric C–H bending vibrations and CH3 

bending, respectively (Rani et al., 2017; Tang et al., 2022). The 
stretching vibration of C-O is at 1071.62 cm-1 (Khoon Poh et al., 2014)

 

  
(a) (b) 

Fig. 1. SEM image of cow dung-based biochar, (a) 50 and (b) 100 kx magnification. 
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Fig. 2. FTIR spectrum of cow dung-based biochar. 
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3.2. Effect of pH 
  
The effect of pH in the range of 4-12 on methylene blue adsorption is 
shown in Fig. 3a, while other parameters were fixed at 0.2 g adsorbent 
dose, 1 h contact time, 10 mg/l methylene blue concentration, and room 
temperature. According to the obtained results, the trend of methylene 
blue removal at various pH depicted more fluctuations. However, the 
maximum methylene blue removal was detected at pH=4 equivalent to 
93.08% with an adsorption capacity of 3.07 mg/g. It should be 
mentioned that solution pH can directly affect the biochar surface 
charge and the degree of ionization of pollutants. At acidic conditions, 
H+ ions compete with cationic methylene blue molecules to be 
adsorbed by biochar. Then, the H+ ions induce the biochar surface to 
be positively charged, creating a repulsion force between the biochar 
surface and methylene blue ions (Habeeb et al., 2023). However, the 
adsorption capacity of methylene blue was enhanced by the pH 
increase due to the weak impact of H+ on the charge of the biochar 
surface (Ofgea, Tura, and Fanta, 2022; Yusop, Aziz, and Ahmad, 
2022). A similar finding was obtained by Chu et al. (2019) who reported 
the maximum removal efficiency of rhodamine B (97.7%) at pH 4 using 
sodium dodecyl sulfate-modified nano-alumina. Another study revealed 
the significant decolorization of methylene blue at about 77% at pH 3 
after 30 min (Sun et al., 2015). 

 
3.3. Effect of biochar dose 
 
The adsorption process of methylene blue at a biochar dose of 0.2 to 1 
g is demonstrated in Fig. 3b. The other parameters were fixed at a pH 
of 6, contact time of 1 h, methylene blue concentration of 10 mg/L, and 
room temperature. The highest adsorption capacity (4.10 mg/g) was 
obtained at 0.2 g biochar dose with a removal efficiency of 82.08%. As 
can be seen, the removal efficiency of cow dung-based biochar 
increased from 82.08% to 96.95% while the biochar dose was 
enhanced. This can be attributed to the more available adsorption sites 
for methylene blue molecules. Ahmad et al. (2020b) also reported the 
adsorption efficiency of methylene blue as 91.3% at 0.5 gm/100 mL of 
cow dung biochar dose. Another study indicated the enhancement of 
methylene blue removal rate from 47.76% to 98.95% while the dose of 
cattle manure-derived low-temperature biochar was increased from 0.01 g to 
0.5 g, which was relevant to the availability of more adsorption sites and 
increased adsorbent surface area (Zhu et al., 2018). Moreover, 
Habeeb, Zinatizadeh and Zangeneh (2023) declared that the increase 
in the B-ZnO/TiO2 photocatalyst loading from 0.5 g/L to 1.5 g/L led to 
the enhancement of dye removal from 40% to 70%. However, a 
reduction of adsorption capacity was observed from 4.10 mg/g to 0.97 
mg/g with the increase of the adsorbent dose. Rapid superficial sorption 
onto the cow dung-based biochar occurred at a higher adsorbent dose, 
whereas lower methylene blue molecules were adsorbed per available 
adsorption sites, leading to lower adsorption capacity (Einollahipeer, 
and Okati, 2022; Subramaniam, and Ponnusamy, 2015). Another 
reason for the reduction of adsorption capacity at a fixed methylene 
blue concentration could be related to the aggregation of adsorbent 
particles that decreased the total surface area and increased the 
diffusional path (Shirmardi et al., 2016; Zhu et al., 2018). 
 
3.4. The effect of the initial methylene blue concentration  
 
The impact of methylene blue concentration was assessed in the range 
of 5-100 mg/l at fixed pH=6, contact time of 1 hour, biochar dose of 0.2 
g, and room temperature. As can be seen in Fig. 4a, while the 
methylene blue concentration was enhanced to 100 mg/l, the 
adsorption efficiency dropped from 93.27% to 69.07 %. The rapid 
removal of methylene blue at the beginning was probably associated 
with the great number of available vacant sites, which gradually 
decreased to attain equilibrium conditions (Rezaei, Rostami, and Abyar, 
2024). The maximum adsorption capacity was achieved at 100 mg/l 
methylene blue equivalent to 9.87 mg/g. Generally, the transfer rate of 
methylene blue molecules on the adsorbent accelerates by increasing 

of dye concentration, which results in a high adsorption capacity (de 
Souza et al., 2022). According to the literature (Alshekhli et al., 2020), 
the initial concentration of methylene blue provides a strong driving 
force to overcome the mass transfer resistance between the aqueous 
and solid phases, leading to high adsorption capacity.  
3.5. Effect of contact time  
 
The effect of contact time on the adsorption process in a range of 15 to 

120 min is manifested in Fig. 4b at pH=6, temperature of 25 C, biochar 
dose of 0.2 g, and methylene blue concentration of 20 mg/L. The 
maximum removal was achieved at 120 min equal to 92.51% with an 
adsorption capacity of 2.64 mg/g. As can be seen, the methylene blue 
adsorption showed a slight reduction at the initial 30 min and then 
increased with contact time enhancement. This can be explained that 
at the beginning of the adsorption process, a large number of empty 
sites are available on the biochar surface and the adsorption of 
methylene blue dye shows an increasing trend until stabilized (Ahmad 
et al., 2020b; Habeeb, Zinatizadeh, and Zangeneh, 2023). Abd-Elhamid 
et al. (2020) also demonstrated the increase of methylene blue and 
crystal violet removal with time with maximum adsorption efficiency of 
99.91 and 44.64 mg/g, respectively. The same trend was found by 
Subramaniam and Ponnusamy (2015) for methylene blue removal, 
which rapidly increased with time more than 60 min. They also referred 
to the aggregation of dye molecules at the high contact time, hindering 
the deeper diffusion into the adsorbent structure, and the pores get filled 
up (Subramaniam, and Ponnusamy, 2015).  

 
3.6. Effect of temperature  
 
Fig. 4c shows the effect of temperature on the adsorption process in 

the range of 10-40 C at pH=6, the contact time of 90 min, biochar dose 
of 0.2 g, and methylene blue concentration of 20 mg/L. The maximum 
methylene blue removal (98.78%) was obtained at a temperature of 10 

C with an adsorption capacity of 2.69 mg/g. A decreasing trend in 
methylene blue adsorption was observed with a temperature increase 

from 10 C to 40 C. However, the effect of temperature on the 
adsorption capacity was smaller and showed only a 3.7% reduction in 

the temperature range from 10 to 40 C, demonstrating the capability 
of the cow dung-based biochar for wastewater treatment at ambient 
temperature (Zhu et al., 2018). Moreover, high temperatures enhance 
the mobility of methylene blue molecules, further decrease their 
penetration to the adsorbent pores, and reduce the adsorption potential 
(Ramutshatsha-Makhwedzha et al., 2022). The results were consistent 
with the literature (Yusop et al., 2021; Putranto et al., 2022). Notably, 
the cow dung-based biochar could maintain 70% of its capacity after 20 
cycles. 
 
3.7. Isotherm modeling 
 
The correlation coefficients and adsorption parameters of Langmuir and 
Freundlich isotherm models are shown in Fig. 5 and Table 1. Isotherm 
of methylene blue adsorption on cow dung-based biochar fitted well 
with the Freundlich model (R2=0.9827) which elucidated a 
heterogeneous surface of the biochar with multilayer adsorption 
accompanied by the exponential distribution of adsorbent active sites 
(Saleh, 2022; Rastgar et al., 2023). KF and 1/n values were 1.39 and 
0.572, respectively, which revealed a favorable non-linear interaction of 
dye adsorption (Nowrouzi et al., 2017; Rastgar et al., 2022). On the 
other hand, the Langmuir isotherm showed a qm value of 12.25 mg/g 
with an R2 of 0.9186. Moreover, the RL constant value of 0.299 
confirmed the favorable adsorption of methylene blue. Regarding the 
Freundlich graph (Fig. 5b), the isotherm of methylene blue adsorption 
on cow dung-based biochar was C-type, implying that the ratio between 
the adsorbed dye molecules onto the adsorbent surface area and dye 
molecules concentration in solution was proportionally at any 
concentration (Baloo et al., 2021). 
 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sorption
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(a) (b) 

Fig. 3. Removal of methylene blue at different pH (a) and adsorbent dose (b). 

  
(a) (b) 

 
(c) 

Fig. 4. The effect of methylene blue concentration (a), contact time (b), and temperature (c) on the methylene blue removal. 

  

  
(a) (b) 

Fig. 5. (a) Langmuir and (b) Freundlich isotherm models for methylene blue adsorption. 
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(a) (b) 
Fig. 6. Pseudo-first (a) and second-order (b) kinetic models. 

 
Table 1.  Comparison of isotherm and kinetics of the adsorption process using cow dung-based adsorbents. 

Isotherm  Langmuir  Freundlich 

Pollutant qmax, mg/g 
B, 

L/mg 
R2 RL 

KF, 
(mg/g)(L/mg)1

/n 
n R2 Reference 

Methylene blue 12.25 0.117 0.9186 0.299 1.39 1.75 0.9827 This study 
Methylene blue 17.506 0.583 0.996 0.017 - <1 0.927 Ahmad et al., 2020b 
Methylene blue 192.31 0.1763 0.9999 0.102 39.91 2.66 0.8887 Zhu et al., 2018 
Glyphosate - - - - 1.168 3.293 0.985 Garba et al., 2019 

AMPA - - - - 2.915 2.119 0.865 Garba et al., 2019 

Cadmium 5.12 1.67 0.93 0.009 2.54 6.25 0.91 Van Phuong, and Hoang, 2021 
Fluoride 83.83 0.084 0.781 0.39 8.18 0.89 0.947 Rajkumar et al., 2019 

Kinetic Pseudo-first order  Pseudo-second order 

Pollutant qe, mg/g 
k1, 

min-1 
R2  qe, mg/g 

k2, g/mg 
min 

R2 Reference 

Methylene blue 2.64 0.01 0.4895  2.66 0.164 0.999 This study 
Methylene blue 13.876 0.018 0.925  19.157 0.023 0.994 Ahmad et al., 2020b 
Methylene blue 39.01 0.017 0.9944  39.15 0.026 1 Zhu et al., 2018 
Methylene blue - - -  35.59 0.0042 0.922 Tsai, Hsu, and Lin, 2019 
Fluoride 16.37 0.0394 0.967  4.69 0.0743 0.993 Rajkumar et al., 2019 
Cadmium 1.58 0.015 0.91  4.73 0.055 0.8 Van Phuong, and Hoang, 2021 

 Aminomethylphosphonic acid  
 

Table 2. Thermodynamic parameters of methylene blue adsorption. 

T, K ΔG0 , kJ.mol-1 ΔH0 , kJ.mol-1 ΔS0 , J.mol-1 .K-1 

283 -1911.31 -12944.9 -39.079 

288 -1715.89 

293 -1493.08 

303 -1001.03 

303 -795.041 

 
3.8. Adsorption kinetics  
 
The rate constants of the adsorption process were ascertained using 
pseudo-first and second-order kinetic models to evaluate the 
adsorption mechanisms. The acquired plots and coefficients are 
indicated in Fig. 6 and Table 1. The pseudo-second-order kinetic model 
with an R2 of 0.999 was well-fitted with the empirical data which proved 
that the chemisorption reaction controlled the methylene blue 
adsorption (Tran, 2022). The value of qe was 2.66 mg/g with K2 of 0.164. 
Adsorption of phenol (Jain et al., 2022), organic pollutants (Chen et al., 
2022), and methylene blue (Kandasamy et al., 2023) by cow dung-
based adsorbents also followed the pseudo-second-order kinetic 
model. 

 
3.9. Adsorption thermodynamics 
 
In order to study the temperature influence on the adsorption process, 
thermodynamic parameters were calculated which are listed in Table 2. 
A negative ΔGo value was indicative of the spontaneity of the adsorption 
process. ΔHo presented the negative value which referred to the 
exothermic adsorption process (Jain et al., 2022). The negative value 
of ΔSo also indicated a reduction in the randomness at the 
adsorbent/solution interface within the adsorption process (Sahmoune, 
2019). 
 
4. Conclusions 

This study evaluated the potential of synthesized biochar derived from 
cow dung for methylene blue removal. The optimum pH, biochar dose, 
initial methylene blue concentration, contact time, and temperature 
were 6, 0.2 g, 20 mg/L, 90 min, and ambient temperature. The 
maximum adsorption capacity was accounted as 12.25 mg/g. The 
adsorption process was heterogeneous, chemical, and spontaneous 
based on isotherm, kinetic, and thermodynamic studies. The negative 
ΔHo values elucidated the exothermic adsorption process. The 
superiority of this study was to highlight the intrinsic potential of cost-
effective and available cow dung waste as a precursor for methylene 
blue removal. However, the feasibility of cow dung-based biochar 
application in an industrial aspect should be explored from 
environmental and economic points of view.  

 
Author Contributions 
 
Zohreh Jahannia: Conceptualization, investigation, methodology, and 
writing-original draft.  
Hassan Rezaei: Supervision, validation, review, and editing.  
Hajar Abyar: Investigation, methodology, analysis, review, and editing. 
Somayeh Namroodi: review and editing. 
 
Conflict of Interest 

The authors declare no competing interests and non-financial 
competing interests. 

 

-3

-2.5

-2

-1.5

-25 25 75 125

L
n

(q
e

-q
t)

Time, min

0

10

20

30

40

50

0 25 50 75 100 125

t/
q

t

Time, min



 

Jahannia et al. / Journal of Applied Research in Water and Wastewater 11 (2024) 42-49 

 

48 
 

Acknowledgments  
 
The authors would like to thank Gorgan University of Agricultural 
Sciences and Natural Resources, Iran, for their support. 

 
Data Availability Statement  

The datasets used and/or analyzed during the current study are 
available from the corresponding author on reasonable request. 
 

References 
 
Abd-Elhamid, A. et al. (2020) 'Enhanced removal of cationic dye by eco-

friendly activated biochar derived from rice straw', Applied Water 
Science, 10, pp. 1-11. doi: https://doi.org/10.1007/s13201-019-1128-
0 

Ahmad, A. et al. (2020a) 'A novel study on synthesis of egg shell based 
activated carbon for degradation of methylene blue via 
photocatalysis', Arabian Journal of Chemistry, 13, pp. 8717-8722. 
doi: https://doi.org/10.1016/j.arabjc.2020.10.002 

Ahmad, A. et al. (2020b) 'Removal of methylene blue dye using rice 
husk, cow dung and sludge biochar: Characterization, application, 
and kinetic studies', Bioresource Technology, 306, p. 123202. doi: 
doi: https://doi.org/10.1016/j.biortech.2020.123202 

Alshekhli, A. F. et al. (2020) 'Development of adsorbent from 
phytoremediation plant waste for methylene blue removal', Journal 
of Ecological Engineering, 21, pp. 207-215. doi: 
https://doi.org/10.12911/22998993/126873 

Ayawei, N.,Ebelegi, A. N., and Wankasi, D. (2017) 'Modelling and 
interpretation of adsorption isotherms', Journal of Chemistry, 2017, 
pp. 1-11. doi: https://doi.org/10.1155/2017/3039817 

Baloo, L. et al. (2021) 'Adsorptive removal of methylene blue and acid 
orange 10 dyes from aqueous solutions using oil palm wastes-
derived activated carbons', Alexandria Engineering Journal, 60, pp. 
5611-5629. doi: https://doi.org/10.1016/j.aej.2021.04.044 

Bayahia, H. (2022) 'Green synthesis of activated carbon doped 
tungsten trioxide photocatalysts using leaf of basil (Ocimum 
basilicum) for photocatalytic degradation of methylene blue under 
sunlight', Journal of Saudi Chemical Society, 26, p. 101432. doi: 
https://doi.org/10.1016/j.jscs.2022.101432 

Brandani, S. (2022) 'The rigid adsorbent lattice fluid model: 
thermodynamic consistency and relationship to the real adsorbed 
solution theory', Membranes, 12, p. 1009. doi: 
https://doi.org/10.3390/membranes12101009 

Chen, X. et al. (2022) 'Cow dung-based biochar materials prepared via 
mixed base and its application in the removal of organic pollutants', 
International Journal of Molecular Sciences, 23, p. 10094. doi: 
https://doi.org/10.3390/ijms231710094 

Chu, T. P. M. et al. (2019) 'Synthesis, characterization, and modification 
of alumina nanoparticles for cationic dye removal', Materials, 12, p. 
450. doi: https://doi.org/10.3390/ma12030450 

de Souza, C. C. et al. (2022) 'Activated carbon of Coriandrum sativum 
for adsorption of methylene blue: Equilibrium and kinetic modeling', 
Cleaner Materials, 3, p. 100052. doi: 
https://doi.org/10.1016/j.clema.2022.100052 

Einollahipeer, F., and Okati, N. (2022) 'High efficient Hg (II) and TNP 
removal by NH2 grafted magnetic graphene oxide synthesized from 
Typha latifolia', Environmental Technology, 43, pp. 3956-3972. doi: 
https://doi.org/10.1080/09593330.2021.1937708 

Garba, J. et al. (2019) 'Evaluation of adsorptive characteristics of cow 
dung and rice husk ash for removal of aqueous glyphosate and 
aminomethylphoshonic acid', Scientific Reports, 9, p. 17689. doi: 
https://doi.org/10.1038/s41598-019-54079-0 

Gorissen, S. H. et al. (2020) 'Protein type, protein dose, and age 
modulate dietary protein digestion and phenylalanine absorption 
kinetics and plasma phenylalanine availability in humans', The 
Journal of Nutrition, 150, pp. 2041-2050. doi: 
https://doi.org/10.1093/jn/nxaa024 

Habeeb, S. et al. (2023) 'Visible light activated fe-n-sio2/tio2 
photocatalyst: providing an opportunity for enhanced photocatalytic 
degradation of antibiotic oxytetracycline in aqueous solution', 
International Journal of Engineering, 36, pp. 615-629. doi: 
https://doi.org/10.5829/ije.2023.36.04a.02 

Habeeb, S.A., Zinatizadeh, A.A., Zangeneh, H. (2023) 'Photocatalytic 
decolorization of direct red16 from an aqueous solution using B-
ZnO/TiO2 nano photocatalyst: synthesis, characterization, process 
modeling, and optimization', Water, 15, p. 1203. doi: 
https://doi.org/10.3390/w15061203 

Hu, H. et al. (2020) 'Comparative absorption kinetics of seven active 
ingredients of Eucommia ulmoides extracts by intestinal in situ 
circulatory perfusion in normal and spontaneous hypertensive rats', 
Biomedical Chromatography, 34, p. e4714. doi: 
https://doi.org/10.1002/bmc.4714 

Iwuozor, K. O. et al. (2022) 'Removal of pollutants from aqueous media 
using cow dung-based adsorbents', Current Research in Green and 
Sustainable Chemistry, 5, p. 100300. doi: 
https://doi.org/10.1016/j.crgsc.2022.100300 

Jain, M. et al. (2022) 'Statistical evaluation of cow-dung derived 
activated biochar for phenol adsorption: Adsorption isotherms, 
kinetics, and thermodynamic studies', Bioresource Technology, 352, 
p. 127030. doi: https://doi.org/10.1016/j.biortech.2022.127030 

Kandasamy, S. et al. (2023) 'Adsorption of methylene blue dye by 
animal dung biomass–derived activated carbon: optimization, 
isotherms and kinetic studies', Biomass Conversion and Biorefinery, 
pp. 1-15. doi: https://doi.org/10.1007/s13399-023-04710-y 

Khoon Poh, A. et al. (2014) 'Polyurethane wood adhesive from palm oil-
based polyester polyol', Journal of Adhesion Science and 
Technology, 28, pp. 1020-1033. doi: 
https://doi.org/10.1080/01694243.2014.883772 

Latour, R. A. (2015) 'The Langmuir isotherm: a commonly applied but 
misleading approach for the analysis of protein adsorption behavior', 
Journal of Biomedical Materials Research Part A, 103, pp. 949-958. 
doi: https://doi.org/10.1002/jbm.a.35235 

Li, K. et al. (2017) 'Preparation of nitrogen-doped cotton stalk 
microporous activated carbon fiber electrodes with different surface 
area from hexamethylenetetramine-modified cotton stalk for 
electrochemical degradation of methylene blue', Results in Physics, 
7, pp. 656-664. doi: https://doi.org/10.1016/j.rinp.2017.01.030 

Li, Q. et al. (2022) 'Kinetics of the hydrogen absorption and desorption 
processes of hydrogen storage alloys: A review', International 
Journal of Minerals, Metallurgy and Materials, 29, pp. 32-48. doi: 
https://doi.org/10.1007/s12613-021-2337-8 

Liu, Q. et al. (2020) 'Edge activation of an inert polymeric carbon nitride 
matrix with boosted absorption kinetics and near-infrared response 
for efficient photocatalytic CO2 reduction', Journal of Materials 
Chemistry A, 8, pp. 11761-11772. doi: 
https://doi.org/10.1039/D0TA03870A 

Majd, M. M. et al. (2022) 'Adsorption isotherm models: A 
comprehensive and systematic review (2010− 2020)', Science of the 
Total Environment, 812, p. 151334. doi: 
https://doi.org/10.1016/j.scitotenv.2021.151334 

Misran, E. et al. (2022) 'Banana stem based activated carbon as a low-
cost adsorbent for methylene blue removal: Isotherm, kinetics, and 
reusability', Alexandria Engineering Journal, 61, p. 1946-1955. doi: 
https://doi.org/10.1016/j.aej.2021.07.022 

Nowrouzi, M. et al. (2017) 'An enhanced counter-current approach 
towards activated carbon from waste tissue with zero liquid 
discharge', Chemical Engineering Journal, 326, pp. 934-944. doi: 
https://doi.org/10.1016/j.cej.2017.05.141 

Nowrouzi, M.,Younesi, H., Bahramifar, N. (2018) 'Superior CO2 capture 
performance on biomass-derived carbon/metal oxides 
nanocomposites from Persian ironwood by H3PO4 activation', Fuel, 
223, p. 99-114. doi: https://doi.org/10.1016/j.fuel.2018.03.035 

Ofgea, N. M.,Tura, A. M., Fanta, G. M. (2022) 'Activated carbon from 
H3PO4-activated Moringa stenopetale seed husk for removal of 
methylene blue: optimization using the response surface method 
(RSM)', Environmental and Sustainability Indicators, 16, p. 100214. 
doi: https://doi.org/10.1016/j.indic.2022.100214 

Pandey, B. et al. (2021) 'Phytostabilization of coal mine overburden 
waste, exploiting the phytoremedial efficacy of lemongrass under 
varying level of cow dung manure', Ecotoxicology and Environmental 
Safety, 208, p. 111757. doi: 
https://doi.org/10.1016/j.ecoenv.2020.111757 

https://doi.org/10.1007/s13201-019-1128-0
https://doi.org/10.1007/s13201-019-1128-0
https://doi.org/10.1016/j.arabjc.2020.10.002
https://doi.org/10.1016/j.biortech.2020.123202
https://doi.org/10.12911/22998993/126873
https://doi.org/10.1155/2017/3039817
https://doi.org/10.1016/j.aej.2021.04.044
https://doi.org/10.1016/j.jscs.2022.101432
https://doi.org/10.3390/membranes12101009
https://doi.org/10.3390/ijms231710094
https://doi.org/10.3390/ma12030450
https://doi.org/10.1016/j.clema.2022.100052
https://doi.org/10.1080/09593330.2021.1937708
https://doi.org/10.1038/s41598-019-54079-0
https://doi.org/10.1093/jn/nxaa024
https://doi.org/10.5829/ije.2023.36.04a.02
https://doi.org/10.3390/w15061203
https://doi.org/10.1002/bmc.4714
https://doi.org/10.1016/j.crgsc.2022.100300
https://doi.org/10.1016/j.biortech.2022.127030
https://doi.org/10.1007/s13399-023-04710-y
https://doi.org/10.1080/01694243.2014.883772
https://doi.org/10.1002/jbm.a.35235
https://doi.org/10.1016/j.rinp.2017.01.030
https://doi.org/10.1007/s12613-021-2337-8
https://doi.org/10.1039/D0TA03870A
https://doi.org/10.1016/j.scitotenv.2021.151334
https://doi.org/10.1016/j.aej.2021.07.022
https://doi.org/10.1016/j.cej.2017.05.141
https://doi.org/10.1016/j.fuel.2018.03.035
https://doi.org/10.1016/j.indic.2022.100214
https://doi.org/10.1016/j.ecoenv.2020.111757


 

Jahannia et al. / Journal of Applied Research in Water and Wastewater 11 (2024) 42-49 

 

49 
 

Patty, D. J.,Loupatty, G., Sopalauw, F. (2017) 'Interpretation FTIR 
spectrum of seawater and sediment in the Ambon Bay (TAD)', AIP 
Conference Proceedings, 1801, pp. 1-6. doi: 
https://doi.org/10.1063/1.4973109 

Peer, F. E.,Bahramifar, N., Younesi, H. (2018) 'Removal of Cd (II), Pb 
(II) and Cu (II) ions from aqueous solution by polyamidoamine 
dendrimer grafted magnetic graphene oxide nanosheets', Journal of 
the Taiwan Institute of Chemical Engineers, 87, pp. 225-240. doi: 
https://doi.org/10.1016/j.jtice.2018.03.039 

Putranto, A. et al. (2022) 'Effects of pyrolysis temperature and 
impregnation ratio on adsorption kinetics and isotherm of methylene 
blue on corn cobs activated carbons', South African Journal of 
Chemical Engineering, 42, pp. 91-97. doi: 
https://doi.org/10.1016/j.sajce.2022.07.008 

Rajahmundry, G. K. et al. (2021) 'Statistical analysis of adsorption 
isotherm models and its appropriate selection', Chemosphere, 276, 
p. 130176. doi: https://doi.org/10.1016/j.chemosphere.2021.130176 

Rajkumar, S. et al. (2019) 'Low-cost fluoride adsorbents prepared from 
a renewable biowaste: syntheses, characterization and modeling 
studies', Arabian Journal of Chemistry, 12, pp. 3004-3017. doi: 
https://doi.org/10.1016/j.arabjc.2015.06.028 

Ramutshatsha-Makhwedzha, D. et al. (2022) 'Activated carbon derived 
from waste orange and lemon peels for the adsorption of methyl 
orange and methylene blue dyes from wastewater', Heliyon, 8, p. 
e09930. doi: https://doi.org/10.1016/j.heliyon.2022.e09930 

Rani, R. et al. (2017) 'Evaluation of anti-diabetic activity of glycyrrhizin-
loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic 
rats', European Journal of Pharmaceutical Sciences, 106, p. 220-
230. doi: https://doi.org/10.1016/j.ejps.2017.05.068 

Rastgar, S. et al. (2022) 'Low-cost magnetic char derived from oily 
sludge for Methylene Blue dye removal: optimization, isotherm, and 
kinetic approach', Advances in Environmental Technology, 8, pp. 
329-343. doi: https://doi.org/10.22104/AET.2022.5795.1595 

Rastgar, S. et al. (2023) 'Photocatalytic degradation of methylene blue 
(MB) dye under UV light irradiation by magnetic diesel tank sludge 
(MDTS)', Biomass Conversion and Biorefinery, pp. 1-12. doi: 
https://doi.org/10.1007/s13399-023-04062-7 

Rezaei, H.,Rostami, N. M., Abyar, H. (2024) 'Magnetic nanocomposite 
synthesized from cocopeat for highly efficient mercury removal from 
aqueous solutions', Biomass Conversion and Biorefinery, pp. 1-13. 
doi: https://doi.org/10.1007/s13399-024-05425-4 

Sahmoune, M. N. (2019) 'Evaluation of thermodynamic parameters for 
adsorption of heavy metals by green adsorbents', Environmental 
Chemistry Letters, 17, pp. 697-704. doi: 
https://doi.org/10.1007/s10311-018-00819-z 

Saleh, T. A. (2022). ‘Isotherm models of adsorption processes on 
adsorbents and nanoadsorbents’, Interface Science and 
Technology. 34, pp. 99-126. https://doi.org/10.1016/B978-0-12-
849876-7.00009-9 

Saraswat, S. K.,Demir, M., Gosu, V. (2020) 'Adsorptive removal of 
heavy metals from industrial effluents using cow dung as the 
biosorbent: Kinetic and isotherm modeling', Environmental Quality 
Management, 30, pp. 51-60. doi: https://doi.org/10.1002/tqem.21703 

Shirmardi, M. et al. (2016) 'Removal of atrazine as an organic micro-
pollutant from aqueous solutions: a comparative study', Process 
Safety and Environmental Protection, 103, pp. 23-35. doi: 
https://doi.org/10.1016/j.psep.2016.06.014 

Shukre, R. et al. (2022) 'Thermodynamic modeling of adsorption at the 
liquid-solid interface', Fluid Phase Equilibria, 563, p. 113573. doi: 
https://doi.org/10.1016/j.fluid.2022.113573 

Song, W. et al. (2020) 'Enhanced hydrogen absorption kinetics by 
introducing fine eutectic and long-period stacking ordered structure 
in ternary eutectic Mg–Ni–Y alloy', Journal of Alloys and Compounds, 
820, p. 153187. doi: https://doi.org/10.1016/j.jallcom.2019.153187 

Subramaniam, R., and Ponnusamy, S. K. (2015) 'Novel adsorbent from 
agricultural waste (cashew NUT shell) for methylene blue dye 
removal: Optimization by response surface methodology', Water 
Resources and Industry, 11, pp. 64-70. doi: 
https://doi.org/10.1016/j.wri.2015.07.002 

Sun, X. et al. (2015) 'Removal of cationic dye methylene blue by zero-
valent iron: effects of pH and dissolved oxygen on removal 
mechanisms', Journal of Environmental Science and Health, Part A, 
50, pp. 1057-1071. doi: 
https://doi.org/10.1080/10934529.2015.1038181 

Tang, X. et al. (2021) 'Dynamic pyrolysis behaviors, products, and 
mechanisms of waste rubber and polyurethane bicycle tires', Journal 
of Hazardous Materials, 402, p. 123516. doi: 
https://doi.org/10.1016/j.jhazmat.2020.123516 

Tang, Y. et al. (2022) 'Magnetic powdery acrylic polymer with ultrahigh 
adsorption capacity for atenolol removal: Preparation, 
characterization, and microscopic adsorption mechanism', Chemical 
Engineering Journal, 446, p. 137175. doi: 
https://doi.org/10.1016/j.cej.2022.137175 

Tran, H. N. (2022) 'Is it possible to draw conclusions (adsorption is 
chemisorption) based on fitting between kinetic models (pseudo-
second-order or elovich) and experimental data of time-dependent 
adsorption in solid-liquid phases?', Recent Innovations in Chemical 
Engineering 15, pp. 228-230. doi: 
https://doi.org/10.2174/2405520416666221202085740 

Tsai, W.-T.,Hsu, C.-H., Lin, Y.-Q. (2019) 'Highly porous and nutrients-
rich biochar derived from dairy cattle manure and its potential for 
removal of cationic compound from water', Agriculture, 9, p. 114. doi: 
https://doi.org/10.3390/agriculture9060114 

Udayakumar, M. et al. (2021) 'Synthesis of activated carbon foams with 
high specific surface area using polyurethane elastomer templates 
for effective removal of methylene blue', Arabian Journal of 
Chemistry, 14, p. 103214. doi: 
https://doi.org/10.1016/j.arabjc.2021.103214 

Valderrama, C. et al. (2010) 'Kinetic evaluation of phenol/aniline 
mixtures adsorption from aqueous solutions onto activated carbon 
and hypercrosslinked polymeric resin (MN200)', Reactive and 
Functional Polymers, 70, pp. 142-150. doi: 
https://doi.org/10.1016/j.reactfunctpolym.2009.11.003 

Van Phuong, N., and Hoang, N. K. (2021) 'Assessment of cadmium ion 
adsorption capacity in water by biochar produced from pyrolysis of 
cow dung', International Journal, 9, pp. 203-210. doi: 
https://doi.org/10.30534/ijeter/2021/09932021 

Vyawahare, P. et al. (2022) 'From langmuir isotherm to brunauer–
emmett–teller isotherm', AIChE Journal, 68, p. e17523. doi: 
https://doi.org/10.1002/aic.17523 

Xiu, L. et al. (2020) 'Exopolysaccharides from Lactobacillus kiferi as 
adjuvant enhanced the immuno-protective against Staphylococcus 
aureus infection', International Journal of Biological Macromolecules, 
161, pp. 10-23. doi: https://doi.org/10.1016/j.ijbiomac.2020.06.005 

Yusop, M. F. M. et al. (2021) 'Adsorption of cationic methylene blue dye 
using microwave-assisted activated carbon derived from acacia 
wood: optimization and batch studies', Arabian Journal of Chemistry, 
14, p. 103122. doi: https://doi.org/10.1016/j.arabjc.2021.103122 

Yusop, M. F. M.,Aziz, A., Ahmad, M. A. (2022) 'Conversion of teak wood 
waste into microwave-irradiated activated carbon for cationic 
methylene blue dye removal: optimization and batch studies', 
Arabian Journal of Chemistry, 15, p. 104081. doi: 
https://doi.org/10.1016/j.arabjc.2022.104081 

Zhu, Y. et al. (2018) 'Removal of methylene blue from aqueous solution 
by cattle manure-derived low temperature biochar', RSC Advances, 
8, pp. 19917-19929. doi: https://doi.org/10.1039/C8RA03018A  

 

https://doi.org/10.1063/1.4973109
https://doi.org/10.1016/j.jtice.2018.03.039
https://doi.org/10.1016/j.sajce.2022.07.008
https://doi.org/10.1016/j.chemosphere.2021.130176
https://doi.org/10.1016/j.arabjc.2015.06.028
https://doi.org/10.1016/j.heliyon.2022.e09930
https://doi.org/10.1016/j.ejps.2017.05.068
https://doi.org/10.22104/AET.2022.5795.1595
https://doi.org/10.1007/s13399-023-04062-7
https://doi.org/10.1007/s13399-024-05425-4
https://doi.org/10.1007/s10311-018-00819-z
https://doi.org/10.1016/B978-0-12-849876-7.00009-9
https://doi.org/10.1016/B978-0-12-849876-7.00009-9
https://doi.org/10.1002/tqem.21703
https://doi.org/10.1016/j.psep.2016.06.014
https://doi.org/10.1016/j.fluid.2022.113573
https://doi.org/10.1016/j.jallcom.2019.153187
https://doi.org/10.1016/j.wri.2015.07.002
https://doi.org/10.1080/10934529.2015.1038181
https://doi.org/10.1016/j.jhazmat.2020.123516
https://doi.org/10.1016/j.cej.2022.137175
https://doi.org/10.2174/2405520416666221202085740
https://doi.org/10.3390/agriculture9060114
https://doi.org/10.1016/j.arabjc.2021.103214
https://doi.org/10.1016/j.reactfunctpolym.2009.11.003
https://doi.org/10.30534/ijeter/2021/09932021
https://doi.org/10.1002/aic.17523
https://doi.org/10.1016/j.ijbiomac.2020.06.005
https://doi.org/10.1016/j.arabjc.2021.103122
https://doi.org/10.1016/j.arabjc.2022.104081
https://doi.org/10.1039/C8RA03018A

