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 To analyze transient flows, continuity and momentum equations must be solved. 
Due to the non-linear friction term in the momentum equation, numerical methods 
such as method of characteristics (MOC) are used to analyze the problem in the 
time domain. Although numerical methods are easy to use, but they are 
numerically expensive and time-consuming, especially for advanced applications 
of transient analysis, e.g., real-time evaluations and fault detection algorithms, 
including inverse problem solutions. To cope with mentioned problems, an 
approximate analytical solution should be investigated, which is not required high 
computational time. To this end, the nonlinear equations should be linearized. 
Thus, the focus of this paper is to investigate the linearization methods. 
Therefore, four different linearization methods   are applied and the resulting 
equations of each method in different RPV systems are solved. The efficiency of 
each method is compared with the results obtained from the numerical analysis of 
nonlinear governing equations. The results show that linearized water hammer 
equations provide reasonable results in early pressure wave cycles. The obtained 
results show that the coefficient of determination (R2) of the linearized models 
changes from 0.92 to 0.99. Also, by comparing the results of linearization models 
with each other, the linearized momentum equation in the time domain by 
replacing the mean velocity instead of the instantaneous velocity is the most 
accurate model which R2 is 0.999452. 
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1. Introduction 

 
 If the pressure, velocity, and other flow properties change with 

time, this condition is called transient situation. The transient flow 
exists between two steady states (Chaudhry. 2014). In general, any 
disturbance that changes the average flow rate can initiate a transient 
flow; including fast maneuver of valve or start-up or shutdown of a 
pump (Wylie et al. 1993). The occurrence of transient flows causes 
positive and negative transient pressure waves in the system. The 
negative pressure wave of transient flow can bring high stress and 
strain to the system and even worsen water quality in vacuum 

condition by creating vacuum and cavitation situations, and also the 
positive pressure wave of transient flow causes cracking, leakage or 
even breaking in pipeline, by creating maximum pressure in hydraulic 
systems and pipelines. Also, frequent movement of these pressure 
waves enhances the probability of fatigue in the system and thus can 
cause irreparable damage to the system (Boulos et al. 2005). Positive 
and negative pressure waves can be considered as a good source for 
increasing insight into the system because these transient waves 
propagate along the pipeline (Liggett and Chen. 1994; Lee et al. 
2006). This shows the importance of analyzing the transient flows. 
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To analyze the transient flows, governing equations of the 
transient flow must be solved Because of the nonlinear friction term in 
the momentum equation, it is not possible to solve them through 
closed-form solution. That is why numerical methods such as the 
method of characteristics (Izquierdo and Iglesias. 2006) and finite 
element methods (Amein and Chu. 1975) are usually used to solve 
momentum and continuity equations. Among all methods, the method 
of characteristics is the most popular ones because of its simple 
formulation and simplicity of applying multiple boundary conditions 
(Wang and Yang. 2014). 

 In numerical methods, system must be discretized in time and 
space domains. It makes the analysis time-consuming especially, in 
complex systems. The high computational cost due to repetitive 
computation has turned system analysis into problematic issue in 
some engineering applications such as real-time water supply network 
monitoring. 

As an alternative method, nonlinear governing equations can be 
simplified by linearizing the non-linear terms and then the accuracy of 
results of simplified equations must be investigated. A number of 
hydraulic researchers have tried to simplify the governing equations of 
the transient flows so that they can solve the flow characteristics 
approximately at any time and space by analytical solving the 
equations without gridding the time and space and performing 
repetitive calculations (Wood 1937). 

Wood (1937) simplified the momentum equation by removing the 
non-linear friction term. In this study, the system was consisting a 
reservoir-pipe-valve (RPV), assuming the valve, which is placed at the 
end downstream, is closed rapidly. The first assumption for the valve 
boundary condition is that the valve closure is rapidly and suddenly so 
before the valve closure time, the flow velocity is equal to the flow 
velocity in the steady-state and after that the valve is closed the flow 
velocity becomes zero immediately. The second assumption to 
simplify the valve boundary condition is that the flow velocity is 
decreased linearly, and the last assumption used in this study is that 
the flow velocity is decreased linearly when the valve is closed at a 
variable rate. Also in this study, the RPV system is investigated by 
assuming the connection of two pipes with different characteristics, 
assuming the immediate closure of the valve, and ignoring the effect 
of friction. 

Rich (1945) linearized the equations for the RPV system with a 
similar approach to Wood (1938).  The only difference between these 
two studies was the presentation of closed-form solutions for 
equations. Basha et al. (1996) considered the equations for the RPV 
system and obtained a second-order hyperbolic partial differential 
equation for velocity by combining momentum and continuity 
equations. Then, by extending the nonlinear term of the equation 
using the delta expansion, they linearized it. In this study, they 
linearized the equation once by considering the zeroth-order delta 
expansion term and again by considering the first-order delta 
expansion term. Also, the system studied in this research was 
modeled and analyzed with three different assumptions for the valve 
boundary condition. First assumption was velocity decreases to zero 
rapidly, the second one was velocity decreases linearly against time 
and the last one was velocity decreases with exponential rate during 
the valve closure. 

Wang et al. (2001) obtained an analytical solution for the 
nonlinear equations by ignoring the effect of friction and assuming that 
velocity decreases to zero rapidly. They also considered a leak along 
the pipeline in their research. Sobey (2004) investigated an analytical 
solution for various systems that are differently stimulated.  In this 
study, the heterogeneous wave equation was obtained by linearizing 
the nonlinear term of momentum equation, considering an average for 
velocity and performing mathematical operations on linearized 
momentum and continuity equation. Also, the analytical solution of 
heterogeneous wave was obtained by separating variables, which is 
similar to Sobey’s method (2002).  Provenzano et al. (2011) linearized 
the nonlinear term of momentum equation by ignoring the friction 
term. The system investigated in this study was the RPV system. In 
this study, a new function for calculating velocity over time was 
developed to simplify the valve boundary condition that different rates 
of velocity affected by the valve maneuver could be modeled.  

Linearizing the governing equations of the transient flows and 
simplifying the boundary conditions of the problem is done not only in 
the domain of time, but also in the frequency domain (Chaudhry.  
2014). So far, many researchers have analyzed the transient flow in 
pipelines in frequency domain (Vítkovský, et al. 2011; Ranginkaman 
et al. 2017; Kim. 2007; Riyahi and Haghighi. 2018). In frequency 

domain, the procedure is that the governing equations are transferred 
into the frequency domain assuming a constant oscillating flow and 
then linearization is done. The non-linear equations become the linear 
equations in the frequency domain and finally they are solved 
analytically (Wylie et al. 1993). 

Lee et al. (2010) investigated the error between the output of the 
method of characteristics and frequency method. They claimed that 
the two nonlinear terms of steady friction and valve equation cause 
these errors, and then by reducing these two errors, the values of the 
frequency response and the method of characteristics will be the 
same. Riyahi et al. (2018) reduced the error of linearization of 
oscillating flows in frequency domain using the Genetic Programming 
Algorithm. They provided correction coefficients for frequency domain 
outputs in severe transient flows. Ranginkaman et al. (2019) 
presented the virtual valves method which offers higher order 
frequencies such as nonlinear model, in addition to the main 
frequency. Also in recent years, the frequency-based method is used 
for identifying the abnormality of WDNs. Pan et al. (2021) investigated 
a frequency-based method for the identification of viscoelastic pipe 
properties. In this research, they linked the frequency method to the 
transient wave analysis method which can be used to detect leaks in 
viscoelastic pipes. Keramat et al. (2021) used the frequency method 
for detecting one or two leaks in numerical cases. In this study, the 
influence of the fluid-structure interaction phenomenon was 
investigated on the accuracy of leak location in viscoelastic pipes. 
Angelopoulos et al. (2022) used frequency domain features and 
spectral feature selection process for detecting leaks on pipelines. For 
investigating the efficiency of the detection process, they utilized 
various test studies. 

In all the studies above, it has not been investigating the errors 
due to the linearizing assumptions applied to the equations and 
boundary conditions. Also, no comparison has been made between 
the methods of linearization and nonlinear boundary conditions. In 
addition, in studies on linearization of governing equations and 
boundary conditions in time domain, not only the linearization of the 
valve equation has not been performed, but also flow changes have 
been assumed to be linear with the closing rate of the valve, so the 
other method that has been investigated in this research is using 
linear equations of the frequency domain for analyzing such systems. 

The present study focuses on the investigating linearization 
methods and their errors.  For this reason, non-linear governing 
equation are linearized by methods which are used in previous studies 
such as removing instant velocity in momentum equation, replacing 
instant velocity with mean velocity, expanding the nonlinear term 
using delta expansion, and transferring the linear frequency domain 
equation in time domain, are applied then linearized equation are 
solved by the MOC and the results are compared with the results of 
the nonlinear equation. 
 
2. Governing equations 
 

Momentum and continuity equations describe pressure and flow 
changes in pipelines in each time and space step. The simplified 
continuity and momentum equations are as below (Chaudhry.  2014): 

𝜕𝑄

𝜕𝑡
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+

𝑓

2𝐷𝐴
𝑄|𝑄| = 0 

𝜕𝐻

𝜕𝑡
+

𝑎2

𝑔𝐴

𝜕𝑄

𝜕𝑥
= 0 

(1) 

where, Q is flow rate, H is pressure head, L is length of the pipe, f is 
darcy-weisbach friction factor, x is distance along the pipe, D is pipe 
diameter, t is time, a is wave velocity, and A is pipe cross section 
area. Considering the following dimensionless variables can lead the 
dimension form of Eq.1 to the dimensionless form like Eq.2 
(Chaudhry.  2014). 

𝐾

= 𝑓
𝐿 ∗ 𝑉0

2 ∗ 𝐷 ∗ 𝑎
 

 

𝐻𝑑 =
𝐻 ∗ 𝑔

𝑎𝑉0

 𝑉𝑑 =
𝑉

𝑉0

 𝑡𝑑 =
𝑡 ∗ 𝑎

𝐿
 𝑥𝑑 =

𝑥

𝐿
 

(2) 

𝜕𝐻𝑑

𝜕𝑡𝑑

+
𝜕𝑉𝑑

𝜕𝑥𝑑

= 0 

𝜕𝑉𝑑

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 𝐾𝑉𝑑|𝑉𝑑| = 0 

where d index refers to the dimensionless values, and V0 is uniform 
velocity at steady-state. governing equations of transient flow are 
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commonly solved by the method of characteristics (MOC). In this 
method, the two partial differential equations of continuity and 
momentum are linearly combined and converted into ordinary 
differential equations. Takin Integral of the ordinary differential 
equations over positive and negative characteristic lines in discretized 
space leads to Eq.3a and Eq.3b which are used to obtain the pressure 
and velocity at time and space points on the grid by coupling these 
equations with boundary conditions.    

𝑉𝑑𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝐴 + 𝐻𝑑𝐴 − 𝐾∆𝑡𝑑𝑉𝑑𝐴|𝑉𝑑𝐴| 
3a 

𝑉𝑑𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝐵 − 𝐻𝑑𝐵 − 𝐾∆𝑡𝑑𝑉𝑑𝐵|𝑉𝑑𝐵| 
3b 

where p index refers to unknown points and a and b index represent 
the points at which the pressure and velocity of the flow are known 
and are related to the former time step. In the following sections, 
different types of linearization methods for transient flow equations are 
described. 

 
2.1. First method 

 
By removing the nonlinear friction term from the momentum 

equation, the nonlinear governing Eq.1 can be linearized as below 
(Liggett and Chen. 1994): 

𝜕𝐻𝑑

𝜕𝑡𝑑

+
𝜕𝑉𝑑

𝜕𝑥𝑑

= 0 

𝜕𝑉𝑑

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

= 0 

(4) 

Similar to previous section, the system of Eq.4 is solved using MOC 
and Eq.5a and Eq.5b are obtained.  
𝑉𝑑𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝐴 + 𝐻𝑑𝐴 

 

5a 

𝑉𝑑𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝐵 − 𝐻𝑑𝐵 
 

5b 

2.2. Second method 
 

The Eq. 1 can be linearized and convert to Eq.6 by replacing |Vd | 

in the momentum equation with V0d/2 which is an acceptable 

approximation of flow velocity before the valve is completely closed 
since when downstream valve is completely closed, dimensionless 
velocity decreases from 1 to 0. It must be noted that the value of initial 
dimensionless velocity is equal to one according to the definition of 
dimensionless variables. 

𝜕𝐻𝑑

𝜕𝑡𝑑

+
𝜕𝑉𝑑

𝜕𝑥𝑑

= 0 

𝜕𝑉𝑑

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 𝐾𝑉𝑑

𝑉0𝑑

2
= 0 

(6) 

Similarly solving the Eq. 6 by MOC result in Eq. 7a and Eq. 7b as 
follow and using below equations enable us to specify the effect of 
linearization assumption on head and velocity.  

𝑉𝑑𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝐴 + 𝐻𝑑𝐴 − 𝐾∆𝑡𝑑𝑉𝑑𝐴

𝑉0𝑑

2
 

7a 

𝑉𝑑𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝐵 − 𝐻𝑑𝐵 − 𝐾∆𝑡𝑑𝑉𝑑𝐵

𝑉0𝑑

2
 

 

7b 

2.3. Third method 
 
In this method, the nonlinear term is expanded by perturbation 

series (Bender et al. 1989). The perturbation expansion method can 
be used in any engineering problems facing nonlinear partial 
differential equations. One of the applications of mentioned method is 
obtaining analytical solution of continuity and energy equation in water 
distribution network by linearizing the nonlinear friction term (Basha 
and Kassab. 1996). Eq. 2 can be re-written as below: 

𝜕𝐻𝑑

𝜕𝑡𝑑

+
𝜕𝑉𝑑

𝜕𝑥𝑑

= 0 

𝜕𝑉𝑑

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 𝐾𝑉𝑑|𝑉𝑑|𝛿 = 0 

(8) 

The δ term represents the nonlinearity and if it equals zero, the 
momentum equation totally becomes linear and when it increases 

from zero the effect of the nonlinear term becomes more significant 
(Bender et al. 1989). To address nonlinearity in Eq.8, dimensionless 
velocity is expanded in a perturbation series and assume that the 
terms are higher than the 2nd order of δ2 are negligible. Finally, the 
below equation can be reached.  

𝑉𝑑 = 𝑉𝑑𝑧 + 𝛿𝑉𝑑𝑓 + 𝛿2𝑉𝑑𝑠 + 𝑂(𝛿3) (9) 

where, dis dimensionless velocity and Vdz, Vdf, and Vds are linear or 

zeroth order term, first order term and second order term, respectively.  
By replacing Eq.9 with the nonlinear term in Eq.8 and expanding 

|Vd |δ by Maclaurin Series, which are mentioned in Eq.10 and Eq.11, 

and by simplifying and rewriting exponential sentences, Eq.12 is 
obtained as below:  

𝑒𝑧 = 1 +
𝑧

1!
+

𝑧2

2!
+ ⋯ (10) 

ln( 1 + 𝑧) = 𝑧 −
𝑧2

2
+

𝑧3

3
+ ⋯ , |𝑧| < 1 (11) 

𝑉𝑑|𝑉𝑑|𝛿 = 𝑉𝑑𝑒𝛿 ln 𝑉𝑑 = 𝑉𝑑𝑧

+ 𝛿(𝑉𝑑𝑓

+ 𝑉𝑑𝑧 ln|𝑉𝑑𝑧|)

+ 𝛿2 (𝑉𝑑𝑠

+
𝑉𝑑𝑧|𝑉𝑑𝑓|

|𝑉𝑑𝑧|
+ 𝑉𝑑𝑓 ln|𝑉𝑑𝑧|

+
𝑉𝑑𝑧

2
ln2 𝑉𝑑𝑧)

+ 𝑂(𝛿3) 

(12) 

Now, by substituting sentences with the same order with the nonlinear 
term in the momentum equation, the following linear momentum 
equation is obtained: 

𝜕𝑉𝑑𝑧

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 𝐾𝑉𝑑𝑧 = 0 (13) 

It must be noted that in this study, only zeroth and first order of delta 
expansion are considered. Solving Eq.13 and Eq.8 using method of 
characteristic, following equations using the zeroth order term are 
obtained:  

𝑉𝑑𝑧𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝑧𝐴 + 𝐻𝑑𝐴 − 𝐾∆𝑡𝑑𝑉𝑑𝑧𝐴 

 

14a 

𝑉𝑑𝑧𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝑧𝐵 − 𝐻𝑑𝐵 − 𝐾∆𝑡𝑑𝑉𝑑𝑧𝐵 
 

14b 

Similarly, by substituting up to first-order terms in the momentum 
equation, a new form of momentum equation is obtained as follows: 

𝜕𝑉𝑑𝑓

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 𝐾𝑉𝑑𝑓 = −𝐾𝑉𝑑𝑧

𝑙𝑛 𝑙𝑛 |𝑉𝑑𝑧| 

(15) 

According to Eq.15, to calculate the first order velocity, it is necessary 
to have the zeroth-order velocity which is obtained from Eq.13. As a 
matter of fact, the accuracy of the first order velocity depends on a 
large extent on the solution of Eq.13. Similarly, solving continuity and 
linear momentum Eq.15 and applying the method of characteristic 
leads to the following relations: 

𝑉𝑑𝑓𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝑓𝐴 + 𝐻𝑑𝐴 − 𝐾∆𝑡𝑑(𝑉𝑑𝑓𝐴 + 𝑉𝑑𝑧𝐴

𝑙𝑛 𝑙𝑛 |𝑉𝑑𝑧𝐴| ) 

16a 

𝑉𝑑𝑓𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝑓𝐵 − 𝐻𝑑𝐵 − 𝐾∆𝑡𝑑(𝑉𝑑𝑓𝐵 + 𝑉𝑑𝑧𝐵

𝑙𝑛 𝑙𝑛 |𝑉𝑑𝑧𝐵| ) 

 

16b 

2.4. Fourth method 
 
The water hammer governing equation are also solved in the 

frequency domain by the frequency response method (FRM). In this 
method the governing equations are transferred into the frequency 
domain (assuming a constant oscillating flow) and then transformed 
into linear governing equations in the frequency domain by 
linearization. Then, the linear differential equations are analytically 
solved in the frequency domain. As another way to linearize the 
nonlinear term of the momentum equation, the linear equation of the 
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frequency domain is transferred to the time domain. The governing 
equations for transient flow in frequency domain are as follows: 

𝑑𝑞

𝑑𝑥
+

𝑔𝐴

𝑎2
ℎ𝑗𝑤 = 0 

𝑑ℎ

𝑑𝑥
+

1

𝑔𝐴
𝑞𝑗𝑤 +

𝑓𝑄̅

𝑔𝐷𝐴2
𝑞 = 0 

(17) 

where, h is Fourier transformation of pressure oscillations with respect 
to the average value, Q is average flow rate, j is equal to √(2&-1), and 
q is Fourier transformation of flow oscillations with respect to the 
average value. Eq. 17 can be written as belove by applying the 
inverse Fourier transformation.   

𝜕𝑞∗

𝜕𝑥
+

𝑔𝐴

𝑎2

𝜕ℎ∗

𝜕𝑡
= 0 

𝜕ℎ∗

𝜕𝑥
+

1

𝑔𝐴

𝜕𝑞∗

𝜕𝑡
+

𝑓

𝑔𝐷𝐴2
𝑄̅𝑞∗ = 0 

(18) 

where, q* and h* are the inverse Fourier transformation of q and h 
with respect to the average values, respectively. Since in the 

derivation of governing equation in the frequency domain terms 
𝜕𝐻̅

𝜕𝑥
, 

𝑓

𝑔2𝐷𝐴2 𝑄̅2
 in the momentum equation are eliminated and terms 

𝑔𝐴

𝑎2

𝜕𝐻̅

𝜕𝑡
 and 

𝜕 𝑄̅

𝜕𝑥
 in the quantity equation are neglected, to transfer 

frequency domain equations to time domain equations it is necessary 
to add all the mentioned terms in to the Eq.18, so the below equation 
can be reached. 

𝜕𝑞∗

𝜕𝑥
+

𝜕𝑄̅

𝜕𝑥
+

𝑔𝐴

𝑎2

𝜕ℎ∗

𝜕𝑡
+

𝑔𝐴

𝑎2

𝜕𝐻̅

𝜕𝑡
= 0 

𝜕ℎ∗

𝜕𝑥
+

𝜕𝐻

𝜕𝑥
+

1

𝑔𝐴

𝜕𝑞∗

𝜕𝑡
+

𝜕𝑄̅

𝜕𝑡

+
𝑓

𝑔𝐷𝐴2
𝑄̅𝑞∗

+
𝑓

𝑔2𝐷𝐴2
𝑄̅2

= 0 

(19) 

Replacing Eq. 20 in Eq.19 and simplifying, the linear governing 
equations transferred from the frequency domain to the time domain 
are obtained in terms of instantaneous flow and head as follows: 

𝑄 = 𝑄̅ + 𝑞∗ 
𝐻 = 𝐻̅ + ℎ∗ 

(20) 

𝜕𝐻

𝜕𝑡
+

𝑎2

𝑔𝐴

𝜕𝑄

𝜕𝑥
= 0 

𝜕𝑄

𝜕𝑡
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+

𝑓𝑄̅

𝐷𝐴
(𝑄 −

𝑄̅

2
) = 0 

(21) 

Then, replacing the dimensionless variables in Eq.21, the 
dimensionless linear equations are obtained as follows: 

𝜕𝐻𝑑

𝜕𝑡𝑑

+
𝜕𝑉𝑑

𝜕𝑥𝑑

= 0 

𝜕𝑉𝑑

𝜕𝑡𝑑

+
𝜕𝐻𝑑

𝜕𝑥𝑑

+ 2𝐾𝑉𝑑
̅̅ ̅(𝑉𝑑 −

𝑉𝑑
̅̅ ̅

2
) = 0 

(22) 

Solving the above equations by MOC resulted in Eq. 23a and Eq. 23b. 
𝑉𝑑𝑝 = 𝐶𝑝 − 𝐻𝑑𝑝 

𝐶𝑝 = 𝑉𝑑𝐴 + 𝐻𝑑𝐴 − 2𝐾∆𝑡𝑑𝑉𝑑
̅̅ ̅ (𝑉𝑑𝐴

−
𝑉𝑑
̅̅ ̅

2
) 

23a 

𝑉𝑑𝑝 = 𝐶𝑛 + 𝐻𝑑𝑝 

𝐶𝑛 = 𝑉𝑑𝐵 − 𝐻𝑑𝐵 − 2𝐾∆𝑡𝑑𝑉𝑑
̅̅ ̅ (𝑉𝑑𝐵

−
𝑉𝑑
̅̅ ̅

2
) 

23b 

 
2.5. Boundary and initial conditions 
2.5.1. Upstream boundary condition 

 
 In this study, mild reservoir head fluctuations have been 

neglected. (Assuming a large volume of the reservoir compared to the 

pipeline). Also, the head at the beginning of the pipeline is assumed to 
be approximately equal to the reservoir head. (Assuming insignificant 
entrance losses). 

 
2.5.2. Downstream boundary condition 

 
At valve boundary condition, flow through the valve is connected 

to the pressure at end of the pipe by orifice equation (Chaudhry. 
2014). 

𝑄𝑃,𝑛𝑖+1 = (𝐶𝑑𝐴𝑣)√2𝑔𝐻𝑝,𝑛𝑖+1 (24) 

where, subscript ni+1 is standing for downstream end, Av is area of 
the valve opening and Cd is coefficient of discharge. 

As shown in the relation above, the boundary condition of valve 
establishes a nonlinear relationship between the flow and the head at 
the downstream valve. Therefore, in addition to linearizing the non-
linear term of the momentum equation, one strategy is also needed to 
linearize the boundary condition of the valve. In most previous studies, 
flow rate changes have been considered proportional to the closure 
time. For example, assuming the linear valve, the flow changes is 
defined as below function (Basha et al. 1996; Rich. (1945); Sobey. 
(2004); Wood. (1938). 

𝑄 = 𝑄0 (1 −
𝑡

𝑇𝑐
) 

(25) 

where, Tc is valve closure time and Q0 is initial flow rate in steady 
state. In this study, as alternative for valve boundary condition, the 
linear valve equation in the frequency domain can be transferred to 
the time domain which is as follows (Chaudhry. 2014): 

ℎ −
2𝐻0

𝑄0

𝑞 +
2𝐻0∆𝜏

𝜏0

= 0 
(26) 

where, τ0 is initial relative valve opening and ∆τ is Fourier 
transformation of valve oscillation around the Initial relative valve 
opening. The relation of instantaneous relative valve opening is as 
below:  

𝜏 = 𝜏0 + 𝜏∗ (27) 

where, τ* is inverse Fourier transformation of relative valve opening 
oscillation around the average value. applying Inverse Fourier 
transformation on Eq.26 and replacing Eq.27 in it, leads to: 

𝑄 = −
𝑄0

2
+ (

𝑄0

𝜏0

𝜏) + (
𝑄0

2𝐻0

𝐻) (28) 

Replacing dimensionless variables in Eq. 28, the dimensionless linear 
valve equation in the time domain is obtained as below: 

𝑉𝑑 = −
𝑉𝑑0

2
+ (

𝑉𝑑0

𝜏0

𝜏) + (
𝑉𝑑0

2𝐻𝑑0

𝐻𝑑) (29) 

 
2.5.3. Unsteady friction 

 
Unsteady friction can change the results to some extent and 

accelerate the pressure wave dissipation, so to achieve more 
accurate results, it is necessary to consider unsteady friction loss in 
the momentum equation. Different methods to calculate unsteady 
friction loss are generally classified into 3 categorizations:  

a) Quasi-two-dimensional models 
b) Instantaneous acceleration-based (IAB) methods 
c) Convolution integral methods 
IAB concept which was proposed by Carsten and Roller. 1959 is 

used in this study. IAB was revised and modified later by other 
researchers such as Brunone et al. 1991, Vardy and Brown. 1995, 
Begant et al. 2001, Ramos et al. 2004, and Vitkovsky et al. 2006. 

Here is Brunone model after modification (Ramos et al. 2004): 

𝑓𝑢 =
𝑘𝐷

𝑄|𝑄|
(

𝜕𝑄

𝜕𝑡
+ 𝑎𝑠𝑖𝑛𝑔𝑛(𝑄) |

𝜕𝑄

𝜕𝑥
|) (30) 

where, K is the Brunone coefficient, which is calculated either 
experimentally or by trial and error or using the shear coefficient 
formula C *. 

𝑘 =
√𝐶∗ 

2
 

(31) 

In which C * is calculated as follow (Vitkovsky et al. 2006): 
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(32) 
𝐶∗ = {

0.0476              𝑅𝑒 ≤ 2000
7.41

𝑅𝑒log (14.3/𝑅𝑒0.05)
              𝑅𝑒 > 2000                      

 

 
where, Re is Reynolds number In this study, different methods of 
linear assumptions of the momentum equation and boundary 
conditions are investigated. Also, the results of governing equations 
and linearization approaches are compared to each other. Therefore, 
this study aimed to determine the efficiency of linear governing 
equations of transient flows in time domain.  

 
3. Results and discussion 
3.1. Investigating the effect of linear assumptions of the 
boundary condition on transient pressure waves 
 

To investigate the effect of linear valve as a boundary condition on 
the pressure head, nonlinear governing equations have been solved 
for a reservoir-pipe-valve system with dimensionless variable (K=f 

(LV0)/2Da)0.06. This dimensionless variable, K, means a system with 

different value of pipe length, diameter pipe, velocity and wave speed 
for analyzing the effect of different valve linearization assumptions. 

Using Eq.3a, Eq.3b, and also considering the Eq.24, Eq.25, and 
Eq.29 as boundary condition equations, the pressure head and the 
instantaneous velocity at the valve location are calculated up to the 

dimensionless time td=ta/L=4. The results are shown in Figs. 1 to 3. In 

these figures, “Nonlinear”, “Linear”, and “Uniform” represent the 
pressure head resulting from solving nonlinear governing equations of 
transient flows which consider Eq.24, Eq.29 and Eq.25 as valve 
boundary condition. Among these methods, the nonlinear method is 
more accurate than the others and the other methods' results are 
compared with this method. According to Fig.3, when the valve is 
closed in a short time, the results of simplifying assumptions of the 
valve equation are accurate and are good match to the results of 
nonlinear valve boundary condition. In this study, the main assumption 
is that the valve closure is rapid.  So due to the fact that the results of 
velocity and pressure head which are calculated based on the 
simplification assumption are a good match to the results without 
implementation of the simplification assumption, the continuation of 
the calculations is done by using Eq.29 as the valve boundary 
condition. Also, the closing time of the valve in different systems is 
assumed to be equal to 0.1 L / a 

  
b) Dimensionless pressure head a) Dimensionless velocity 

Fig. 1. Comparison of the solutions of nonlinear and linear equations considering linear and non-linear valve equations that valve closure time is 
equal to td=L/a. 

 

  
a) Dimensionless velocity b) Dimensionless pressure head 

Fig. 2. Comparison of the solutions of nonlinear and linear equations considering linear and non-linear valve equations that valve closure time is 
equal to td=0.5L/a. 
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b) Dimensionless pressure head a) Dimensionless velocity 

Fig. 3. Comparison of the solutions of nonlinear and linear equations considering linear and non-linear valve equations that valve closure time is 
equal to td=0.1L/a. 

 
3.2. Investigating the effect of linear assumptions of the 
Momentum equation on transient pressure waves 
 

In order to investigate each of the linearization methods 
introduced for the reservoir-pipe-valve system, assuming rapid valve 
closure, Eq.4, Eq.3a, Eq.15, Eq.13, and Eq.22 are solved for different 

numbers of dimensionless k-values (K=f(LV0)/2Da) using the method 

of characteristics and then the results are compared with the results of 
nonlinear governing equations of transient flows. Figs. 4 to 8 show the 
dimensionless values of transient pressure wave resulting from the 
linear and nonlinear governing equations, at the valve location and at 
the middle of pipeline based on dimensionless time. In Figs. 4 to 8, 
term “Nonlinear” refer to totally nonlinear equations, “Frictionless” 
refers to the first method which is complete ignoration of nonlinear 
friction term, “LinearMeanV” represents the second method which 
means linearizing the momentum equation using the mean velocity 
instead of instantaneous velocity, and “ZerothOrderPrerturb” refers to 
the linear momentum equation obtained from the zeroth-order 
perturbation. Also “FirstOrderPrerturb” refers to linear momentum 
equation obtained from the first-order perturbation which are result 
from third method and “Freq2Time”, refers to linear equations 
transferred from the frequency domain into the time domain which 
obtained from fourth method 

Since it’s very important in most applications of engineering to 
calculate flow characteristics in the early computational time, so only 
the first five cycles of the pressure wave (Dimensionless time =20), 
have been calculated on. Since friction term has been totally ignored 
in the first linearization method, it is clear that the transient pressure 
wave calculated based on this method will not damp over time. (Figs. 
4 to 8). 

In linearization methods 2 to 4, for linearizing the nonlinear friction 

term, the Vd |Vd | term has been linearized in different ways, so it can 

be seen in the results come from methods 2 to 4 that the transient 
pressure wave is damped with time. It can be seen from Figs. 4 to 8, 
that the longer the computational time gets, the more results of linear 
and nonlinear equations differ from each other in quantity. It can also 
be concluded that by increasing the K-value, the difference between 
the results of linear equations and nonlinear equations increases. 
Generally, it seems that solving linear equations provides reasonable 
results for transient pressure waves and the results obtained from 
different linearization methods are not significantly different for first 
transient pressure wave cycles, but by increasing the computational 
time, the difference between the obtained results from different linear 
equations and nonlinear equations increases. 

 

  
𝑥𝑑=1 𝑥𝑑=0.5 

Fig. 4. Comparison the results of linear and nonlinear equations at valve and the middle of pipe locations for K = 0.01 
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𝑥𝑑=0.5 𝑥𝑑=1 

Fig. 5. Comparison the results of linear and nonlinear equations at valve and the middle of pipe locations for K = 0.05 
 

  
𝑥𝑑=1 𝑥𝑑=0.5 

Fig. 6. Comparison the results of linear and nonlinear equations at valve and the middle of pipe locations for K = 0.07 

 

  
𝑥𝑑=1 𝑥𝑑=0.5 

Fig. 7. Comparison the results of linear and nonlinear equations at valve and the middle of pipe locations for K = 0.1 
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𝑥𝑑=1 𝑥𝑑=0.5 

Fig. 8. Comparison the results of linear and nonlinear equations at valve and the middle of pipe locations for K = 0.13 
 

In Figs. 9 to 13, the results of solving continuity and nonlinear 
momentum equations with the results of solving continuity and linear 
momentum equations are demonstrated for each linearization 
methods (0.01<k<0.13). These results include pressure head at the 
end of the pipeline over a dimensionless time interval of 20.   In 
addition, coefficient of determination between pressure values across 
the pipeline which are calculated based on linearization methods and 
nonlinear method is calculated in the dimensionless time interval of 
20.  The coefficient of determination for models in which K term vary 
from 0.1 to 0.13 are between the ranges of 0.92 to 0.99, so it can be 
concluded that linear equations lead to acceptable results. 

The minimum value of R2 in models that K term is equal to 0.01, 0.04, 
and 0.07, belongs to the first linearization method in which the friction 
term is ignored. As seen in Figs 9-a up to 13-a, the dimensionless 
head is constant for the frictionless method. The reason is the friction 
term in the governing equation is ignored so the head is constant 

without any damping. As seen in other methods, especially in the 
nonlinear model the head is damping because of friction term. The 

maximum value of R2 in models with the abovementioned conditions 
belongs to the third linearization method in which the nonlinear term of 
the momentum equation is approximated by the first order of delta 

expansion. The minimum value of R2 in models that K term is equal to 
0.1 and 0.13, belongs to the totally elimination of nonlinear friction 
term, while the maximum coefficient of determination in models 
belongs to the second linearization approach in which the momentum 
nonlinear equation becomes linear by changing the instantaneous 
velocity to the mean velocity. Therefore, from Figs. 9 to 13, it can be 
concluded that the second linearization method for models with higher 
K values and the third linearization method for models with lower K 
values provide more accurate results. 

 

  
b) Second method a) First method 
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d) Third approach c) Third approach 

 
d)Forth method 

Fig. 9. The results of linear equation against nonlinear equation for K = 0.01 
 
 

  
b) Second method a) First method 
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d) Third approach c) Third approach 

 
d) Forth method 

Fig. 10. The results of linear equation against nonlinear equation for K = 0.05 
 

 

  
b) Second method a) First method 



 

Mousavian et al. / Journal of Applied Research in Water and Wastewater 9 (2022) 107-120 

 

117 
 

  
d) Third approach c) Third approach 

 
d) Forth method 

Fig. 11. The results of linear equation against nonlinear equation for K = 0.07 
 
 

  
b) Second method a) First method 
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d) Third approach c) Third approach 

 
d) Forth method 

Fig. 12. The results of linear equation against nonlinear equation for K = 0.1 
 

  
b) Second method a) First method 
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d) Third approach c) Third approach 

 
d) Forth method 

Fig. 13. The results of linear equation against nonlinear equation for K = 0.13. 
 

By considering R2 mean values based on Table 1, linearization 
methods can be ranked from the most to the least accurate results for 
all K values as follows: 

1) Freq2Time 2) First-Order Perturb 3) Zeroth-Order Perturb 4) Linear 
Mean 5) Frictionless. 
 

Table 1. R2 values for all linearization methods and for all different values of k. 

K Frictionless Linear Mean V Zeroth Order Prerturb First Order Prerturb Freq2Time 

0.01 0.93822 0.99983 0.99981 0.99987 0.99987 
0.04 0.93467 0.99973 0.9998 0.99986 0.99969 
0.07 0.9311 0.99951 0.99951 0.99953 0.99943 
0.1 0.92786 0.99926 0.99878 0.99882 0.9991 

0.13 0.92132 0.99893 0.9876 0.98803 0.99881 
Mean 0.930634 0.999452 0.99710 0.997222 0.998822 

 
4. Conclusions 
 

Nonlinear governing equations must be solved to analyze the 
water hammer event caused by rapid closure of a valve in pipelines. 
Due to the nonlinear terms in governing equations and boundary 
conditions, numerical methods must be used for solving these 
equations. In this study, four linearization approaches of momentum 
equation were assessed.  These methods include ignoring the effect 
of friction from the momentum equation, linearizing the nonlinear term 
of friction, and transforming the linear equations from frequency 
domain to the time domain.   Using the reservoir-pipe-valve system, all 
linearization approaches were compared with each other. In order to 
evaluate the efficiency and accuracy of linearization approaches, the 
results of these approaches were compared with the solutions which 
are calculated through nonlinear equations. The coefficient of 

determination, R2, between results of nonlinear equations and 
linearization approaches was calculated for the first five cycles of the 
transient pressure waves which are approximately equal to 0.92 up to 
0.99. As a result, linearization approaches provide acceptable 
solutions in the early times of computation. Considering all the above, 
it can be concluded that among all linearization methods, the most 

accurate strategy for low value of k belongs to the linearization 
equation which equals the delta expansion. The most accurate 
strategy for high value of k belongs to linearize the momentum 
equation in time domain by substituting mean velocity for 
instantaneous velocity. In general, and for all different amounts of k, 
the most accurate model belongs to linearizing the momentum 
equation in time domain by substituting mean velocity for the 
instantaneous velocity, too. This paper is an initial step toward 
improving the explicit methods for solving governing equations. The 
next paper can develop this idea and even use the output of this 
paper for improving the results of the frequency domains for modeling 
water hammer in pressurized pipelines. 
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