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 Surface water quality is of particular importance due to its drinking, industrial, and 
agricultural water sources. Changes in rainfall, temperature and river discharge can 
affect surface water quality. In this study, the effect of CANESM2, FIO, GFDL, 
MIROC climate models and weight composition model of CMIP5 (Coupled Model 
Intercomparison Project) under representative concentration pathways (RCP) of 
4.5, 6, 8.5 scenarios on rainfall and temperature were investigated and then 
monthly discharge of the Aran river in Iran during 2020-2052 and 2053-2085 is 
predicted using the IHACRES runoff model. Next, the LSTM (Long Short-Term 
Memory network)-RNN (Recurrent Neural Networks) model were used to predict 
the total dissolved solids (TDS), sodium adsorption ratio (SAR) for the period 2020-
2030. The results showed that the long-term monthly rainfall under the RCP8.5 
scenario reported a further decrease compared to the RCP4.5 and RCP6, and the 
rainfall fluctuations were higher than the other two scenarios. Temperature changes 
in the second period are higher than the first period, so that in the first period under 
the scenarios of RCP4.5, RCP6 and RCP8.5 showed respectively 1, 1.5 and 2 
degrees Celsius increase, while in the second period, 2, 3 and 4 degrees Celsius 
is predicted. The average discharge shows by 15.8 % and 20.97 % respectively 
decrease under the RCP4.5 scenario in the first and second periods, while by 8.51 
% and 27.55 % under the RCP6 scenario and 6.38 % and 39.89 % under the 
RCP8.5 scenario compared to the observed discharge. The mean, maximum, and 
minimum TDS parameters under RCP4.5 scenario are, respectively, 295, 410, and 
263, and 302, 410, and 257 under RCP6 scenario while 292, 410, and 257 mg, for 
RCP8.5 scenario. These changes are, respectively, 0.42, 0.93 and 0.14 for the 
SAR parameter in RCP4.5 scenario, and equal to 0.44, 0.94 and 0.1 in scenario 6, 
while 0.42, 0.93 and 0.15, respectively, for RCP8.5 scenario in Khorramrood river. 
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1. Introduction 

 
The intensification of human activities such as industrialization, land 

use change and urbanization create increasing pressure on the quality 
of surface water bodies (Delpla et al. 2009; Vörösmarty et al. 2010). 

Since surface water is an important resource in drinking water 
production, reducing water quality could negatively affect the 
production of safe drinking water. Therefore, an increasing variety and 
level of chemical and microbial contaminants is discovered in 
freshwater systems all around the world (Adjei. 2014; Baken et al. 2018; 
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Bunke et al. 2019; Kasmaei et al. 2016; Lapworth et al. 2018; Maier and 
Dandy. 1996; Roholamin Owusu-Boateng and Sluis. 2019). The effect 
of climate change on the biodiversity of freshwater has been studied 
and simulated in the world using paired models of climate change-
hydrology and ecology. Climate change could change the regime of 
water resources, and some species expand their habitat in water 
resources and, in contrast, some species restrict their territory (Azari et 
al. 2013; Taei Semiromi et al. 2014; Tisseuil et al. 2012).  Since water 
quality is affected by many factors and some of these factors have a 
complex nonlinear relationship, different methods of single and 
multivariate linear and nonlinear regression and artificial intelligence 
methods such as artificial neural network models can be used to obtain 
unregistered values. Regression models are highly consistent with data 
from out-of-range data, lost data, and data recorded irregularly 
(Ansaripour et al. 2011). Recently, with the development of software 
techniques, modeling has been used as a powerful tool in various areas 
of water engineering (Azamathulla et al. 2008; Azamathulla. 2013). 
Researchers have tried to use these softwares to model water quality 
issues (Noori et al. 2015; Parsaie et al. 2015; Zare Abyaneh. 2014). 
The use of soft computing techniques such as neural network, adaptive 
neuro-fuzzy inference systems (ANFIS), genetic programming (GP), 
support vector machine (SVM), has led to high accuracy in water quality 
prediction. (Burchard-Levine et al. 2014; Chang et al. 2014; Cordoba et 
al. 2014; Nasr and Zahran. 2014; Van Ael et al. 2015). Nikoo et al. 
(2011) studied the water quality of the Karun river, the largest river in 
the Iran, using parameters measured at existing stations along the river 
(Shahid Abbaspour-Arab Assad Basin). The sodium adsorption ratio 
(SAR) and total dissolved solids (TDS) measured using the neural 
network model were also predicted at the same stations. The results 
showed that the selected artificial neural network model has more 
ability, flexibility and accuracy in predicting river water quality than 
nonlinear regression statistical models. Palani et al. (2008) used neural 
networks to predict the qualitative characteristics of Singapore's coastal 
waters. Rajaee and Mirbagheri. (2009) have also used neural networks 
to predict the suspended load of rivers. Noushadi et al. (2008) simulated 
some water quality parameters of Zayandehrud river in Iran including 
electrical conductivity (EC), total dissolved solids (TDS), acidity, 
bicarbonate, and chloride using neural network. This model was able to 
provide reliable results for predicting these parameters. Gazzaz et al. 
(2012) used multilayer perceptrons (MLPs) neural networks to estimate 
the water quality index of the Kinta river in Malaysia. The results 
showed that the neural network model could be a good alternative to 
long-term calculations of water quality index. Given the importance of 
the sodium absorption ratio (SAR) for plants growing, it is essential to 
predict water quality management for irrigation. Asadollahfardi (2013) 
modeled the sodium absorption ratio (SAR) using artificial neural 
network for Chal Ghazi river in Kurdistan, northwestern Iran. The study 
used a multilayered perceptron neural network (MLP) and average 
monthly data for the period 1998-1999. The input parameters to the 
MLP network are discharge, sulfate, sodium, calcium, chloride, 
magnesium and bicarbonate, and the output of the sodium adsorption 
ratio is predicted by the model. The results showed that the correlation 
coefficient of 0.976 between the actual and predicted values of SAR 
means that the accuracy of the model is acceptable. Ansaripour et al. 
(2001) Studied artificial neural network models and multivariate 
regression to predict water quality parameters in Sefidrood river in Iran. 
For this purpose, the time series of discharge and quality parameters of 
electrical conductivity, bicarbonate, chlorine, sulfate, acidity, sodium, 
potassium, calcium, magnesium and total dissolved solids during 1982-
2005 were used from Astaneh hydrometric station. Simulation and 
prediction of these parameters showed that the neural network has a 
higher capability than multivariate regression in this field. Salami et al. 
(2016) used two methods of mathematical modeling and artificial neural 
network to simulate and predict the qualitative characteristics of river 
water such as: dissolved oxygen (DO), total dissolved solids (TDS), 
total hardness (TH), alkalinity (PH), turbidity (TU), conductivity electric 
(EC), temperature (T), acidity (PH) were used. Apart from alkalinity, all 
water quality parameters in the neural network model had a coefficient 
of determination close to 0.99 while the neural network model to 
simulate alkalinity with coefficient of determination of 0.82. According to 
the water quality changes under climate scenarios, Shahkarami (2018) 
analyzed the trend in water quality components at Tire river Doab 
station in Iran for a period of 15 years using statistical tests during spring 
and winter. The test indicated a significant trend at 90 % confidence 
level for K, Na, Mg, Ca, SO4, Cl and HCO3. EC increased in spring and 
indicated significant trend at a 95 % confidence level in winter. Total 
dissolved solids (TDS) represented the 95 % significant confidence 
level. The results showed the potential effects of global climate change 
on declining water quality. Baek et al. (2020) combined neural network 

(CNN) - long short-term memory (LSTM) was created with a deep 
learning approach by combining CNN and LSTM networks with 
simulated water quality including total nitrogen, total phosphorus and 
total organic carbon. This study revealed that the performances of both 
of the CNN and LSTM models were effective with above the Nash–
Sutcliffe efficiency value of 0.75 and that those models well represented 
the temporal variations of the pollutants in Nakdong river basin in 
Korea. Traditional forecasting methods have lots of problems, such as 
low accuracy, poor generalization, and high time complexity. In order to 
solve these shortcomings, a novel water quality prediction method 
based on the deep LSTM learning network is proposed to predict pH 
and water temperature. It is predicted based on LSTM and constructed 
using the preprocessed data and its correlation information. Results 
show that, in the short-term prediction, the accuracy of pH and water 
temperature can reach 98.56 % and 98.97 % (Hu et al. 2019). 

According to the Intergovernmental Panel on Climate Change 
(IPCC), the main elements in climate conditions that affect the quality 
of surface water and drinking water are temperature, rainfall and 
droughts (Jiménez Cisneros et al. 2014). Increase in temperature 
affects almost all the physicochemical equilibriums and biological 
reactions, and more frequent extreme hydrological events change the 
concentration of chemicals or pathogenic microorganisms in the 
aquatic ecosystems (Delpla et al. 2009; Sluis. 2019; Whitehead et al. 
2009). Bal et al. (2016) studied climate change effects on water quality 
in Yamaha river in U.S.A. Finally, the developed qualitative model used 
to improve the predictive power and provide information for the 
decision-making process. Slaughter et al. (2016) studied the quality of 
Olifants river catchment in South Africa in terms of nutrients (sodium, 
phosphate, etc.) and the electrical conductivity (EC). The model was 
calibrated during the observation period 1999-2005. Then, the 
qualitative status of the river over the period 2046-2065 was simulated 
using the calibrated model and forecasted by climatic scenarios of the 
IPCC fourth assessment report (AR4). The results show the slight 
increase in dilution and nutrient input. Hosseini et al. (2017) examined 
the impact of climate change on the quality of Prairie Regulated river 
that the results indicated the flow of the Qu Appelle river in Canada 
which is used to meet the needs of agriculture, industry and population 
growth in southern Saskatchewan has increased. Due to an increase in 
discharge and temperature because of climate change, it is expected 
that changes in these factors will affect the quality of river water. A 
qualitative model, a water quality analysis simulation program (WASP), 
was used to simulate current and future river water quality. Then, the 
model was used to predict water quality (nutrient concentration and 
dissolved oxygen) during the period of 2050-2055 and 2080-2085. The 
results of the modeling show that rising water temperature could 
increase the amount of ammonium and nitrate while decrease the 
dissolved oxygen and orthophosphate in summer. Mukundan et al. 
(2020) studied the effect of climate change on nutrient loading in the 
Cannonsville Reservoir watershed, New York. They calibrated a 
modified version of the SWAT model entitled the SWAT-Hillslope model 
(SWAT-HS) to evaluate the contribution of nitrate from point and 
nonpoint sources. Eghtetaf et al. (2015) aimed to investigate the effects 
of climate change on rainfall, temperature, runoff and surface water 
quality parameters in Baleqlu Chai river basin located in Ardabil 
province using LARS - WG downscaling model ,HADCM3 model 
outputs, under scenario A2 surveyed the Baleqlu Chai basin for three 
time periods (2011-2030, 2046-2065 and 2080-2099).  The results 
show a 5˚C rise in temperature and a decrease in the average annual 
rainfall to 14 mm during the 2080 to 2099 period. Using the parameters 
of temperature, precipitation and runoff and neural network model, 
changes in TDS and EC values, which are considered respectively as 
important parameters of water quality for drinking and agriculture, were 
estimated under climate change conditions. The results show an 
increase (3 %) in each of the above parameters. That surface water 
quality simulations have been performed using artificial neural network 
models in different parts of the world and have had satisfactory results.  
As far as previous researches have been studied, LSTM-RNN algorithm 
has not been used to predict TDS and SAR in climatic conditions. Due 
to the extensive advancement of deep learning in neural network and 
the capabilities of Python programming language with Keras, Torch and 
Tensor flow libraries in analyzing and predicting the time series, the 
innovation of this research is in using this algorithm using Keras library 
in predicting the qualitative parameters of TDS and SAR under the 
climatic scenarios of the fifth report. 

 
2. Materials and methods 
 

In recent decades, due to the industrialization of human societies 
and the increase in greenhouse gases, the effects of climate change on 
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temperature, precipitation and river discharge have been considered. 
In particular, fluctuations in the discharge time series, droughts and wet 
years have affected the quality of surface and groundwater. In this 
study, TDS and SAR changes caused by climate change in Aran station 
are predicted and the steps of the research process are shown in Fig.1. 

 

Fig.1. Research structure diagram. 
2.1. Study area 
 

The study area is located in the east of Kermanshah province, 
Khorramrood river basin, Kangavar city which has an area of about 674 
square kilometers and one of the most important places for horticulture 
and agriculture. In this region, the majority of rain falls during December 
and January. A large part of western Iran is formed by high and 
interconnected Zagros heights, and the fertile plain of Kangavar in the 
west of Zagros Mountains is situated at an altitude of 1457 meters 
above sea level. The heights of the Middle Zagros has covered the 
northern and northwestern parts of this vast plain. Water in Kangavar 
fertile plain is supplied by receiving good rainfall that is stored in 
aquifers or from the many mirages of this region, which is formed in 

Khorramrood, Asadabad and Kangavar rivers and the confluence of 
these rivers create Gamasiab river. The present study examines the 
effects of climate change on the Khorramrood river discharge of the 
Aran base station, which is located at 47.925 degrees east longitude 
and 34.41 degrees north latitude. The Khorramrud river originates from 
the southeastern highlands of Malayer city and joins Gamasiab river in 
the provinces of Hamadan and Kermanshah Fig. 2. 

 
Fig. 2. Kangavar watershed. 

 
2.2. Weather data, water quality and quantity 
 

Monthly quantitative and qualitative data of Khorramrood river 
including flow discharge, main cations and anions (calcium, 
magnesium, sodium, sulfate, chloride and carbonate), total dissolved 
solids (TDS), electrical conductivity (EC), the sodium adsorption ratio 
(SAR), PH and monthly historical weather data (temperature and 
rainfall) are obtained from Aran hydrometric station and Kangavar 
synoptic station during the 1983-2015 period from Kermanshah 
meteorological organization and Regional Water Company of 
Kermanshah (Tables 1 and 2). 

Table 1. Weather data of Kangavar synoptic station and river runoff in Khorramrood river. 
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean 
Precipitation 
(mm) 

58 65 69 53 36 4 1 1 3 28 67 63 

Max 283 305 339 108 211 21 8 13 19 83 347 176 

Min 13 27 22 0 5 0 0 0 0 0 11 0 

Mean 
Temperature 
(0C) 

-0.06 2.3 6.97 2.96 16.85 22.53 26.5 25.8 20.76 14.8 12.08 7.78 
Max 4.47 6.87 11.0 7.28 20.06 25.87 29.8 28.3 23.89 17.6 15.41 10.87 
Min -8.65 -8.30 1.46 -1.2 13.7 18.6 23.4 22.2 17.97 12.8 9.9 5.5 

Mean 
River runoff 
(m3/s) 

5.23 6.53 8.2 8.2 5.31 1.81 0.30 0.06 0.05 0.51 2.92 5.00 

 
Table 2. Water quality parameters of Khorramrood river 

 Water temperature
Co 

TH pH 
 ,4So

meq/L 
EC 

moh/cm 
TDS, 

meq/L 
Mg, 

meq/L 
Cl, 

meq/L 
Ca, 

meq/L 
Na, 

meq/L 
Parameter 

13.2 230 7.9 0.57 464 298 1.47 0.59 2.54 0.75 Mean 

2.3. Climate models 
 

In order to generate climate scenarios for the future periods 2020-
2052 and 2053-2085, the output of 4 models of the IPCC Fifth 
Assessment Report (AR5) that were more consistent with the historical 
data of this region including FIO (128*64), GFDL (144*90), MIROC 
(128*64) under scenarios RCP4.5, RCP6 and RCP8.5 and the 
CanESM2 (128*64) model are used under RCP4.5 and RCP8.5 
scenarios. The CanESM2 does not have an RCP6 scenario. 
 
2.4. The weighting method of mean observed temperature-
precipitation (MOTP) 
 

Since the output of each climate model includes uncertainty so it is 
better to choose climate models that have had similar results in the 
historic period in the studied area, and in order to reduce the uncertainty 
of each model, the AR5 models could be weighted using MOTP method 
based on the standard deviation of the mean temperature or simulated 
rainfall for the baseline period from the average observed data 
according to Eq. 1.  

𝑊𝑖𝑗 =  
(

1

∆𝑃𝑖𝑗
)

∑ (
1

∆𝑃𝑖𝑗 
)𝑁

𝑖=1

                                                                      (1) 

where, Wij  is the weight of GCMj in month i; and ∆𝑃𝑖𝑗 is the difference 

between average temperature or precipitation simulated by GCMj in 
month i of base period and the corresponding observed value (Massah 
Bavani. 2006). 
 
2.5. Downscaling 
 

The Delta method has been widely used in studies of atmospheric 
general circulation models to assist climate change studies. For the 
precipitation, the delta factor is obtained by dividing the model 
evaluation value by the historical value of the model and the change 
factor obtained for the precipitation parameter is multiplied by the time 
series of the precipitation. This function is performed in any time from 
annual to monthly and the use of a monthly scale prepares the seasonal 
assessment (Guilbert. 2016). The change factor method, because of its 
simplicity, has a popular approach to analyzing climate change (Diaz-
Nieto and Wilby. 2005; Déqué et al. 2007; Prudhomme et al. 2002). In 
this method, the basic assumption is that relative changes in climate 
models are more reliable than absolute values (Ntegeka et al. 2014). 
Relationships 2 to 5 show how to apply this factor on precipitation and 
temperature data. In order to downscale the data locally, a proportional 
method is used that AOGCM simulated climatic variables are extracted 
from cellular information which the target area is located in.                    

∆T = T̅AOGCM,Fut,i  − T̅AOGCM,Base,i   (2) 
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∆Pi = ( 
P̅AOGCM,Fut,i  

P̅AOGCM,Base,i  

) 
(3) 

𝑇 =  TObs + ∆T (4) 

𝑃 =  PObs ×  ∆P (5) 

In Eq. 2, ΔTi is climate change scenario of 33-year long-term 

average temperature for each month; T̅AOGCM,Fut,i   is the average 33-

year temperature simulated by each AOGCM model in the future period 

for each month, T̅AOGCM,Base,i    is average temperature simulated by 

each AOGCM model in the observation period for each month. In Eq. 
3, the above is true for rainfall. In Eq. 4, T is the time series resulting 
from the climate scenario of temperature for the future period, Tobs is 
the time series of observed temperature in the base period (1983-
2015), and ΔT is the temperature change. For rainfall, the cases 
mentioned in Eq. 5 are also established. 

 
2.6. IHACRES rainfall runoff model 
 

Three popular and widely-used conceptual rainfall-runoff models 
were chosen (Andréassian et al. 2012; Shin et al. 2016; Van 
Werkhoven et al. 2009). These three models have different structures. 
First, The GR4J model (Perrin et al. 2003) is considered as a daily 
lumped conceptual rainfall-runoff model which has four parameters, two 
stores (production and routing stores) and two unit hydrographs. 
Second, the IHACRES rainfall-runoff model that is proposed by 
Jakeman and Homberger. (1993) explains the basin hydrological 
behavior well in the event that the surface water is the principal 
component of the flow regime. This is a simple model designed to do 
the hydrograph identification and component flows from rainfall, 
evaporation, and stream flow data. In this model the rainfall-runoff 
processes are illustrated using two modules. Third, the Sacramento 
model (Burnash et al.1973) parameterize soil moisture distribution at 
different depths of interconnected soil tanks including five runoff 
components: direct runoff originating from impervious area, surface 
runoff, interflow, supplementary base flow, and primary base flow.  
In this study, the IHACRES semi-conceptual rainfall-runoff model was 
used to produce monthly runoff and the study on variations of climatic 
parameters on runoff was performed in different climate scenarios for 
the next two periods 2020-2052 and 2053-2085. 
 
2.7. Water quality model 
 

In this study, as it is difficult to access surface water quality data 
due to the weakness of databases. The sodium adsorption ratio (SAR) 
and total dissolved solids (TDS) which had more complete data, was 
considered. In order to fix incomplete data, the information of Doab 
hydrometric station, which is located downstream of the study station 
and also the information of company, which has been active in the study 
area was used. A ten-year monthly time series was arranged from 
2005-2015 for these two qualitative parameters. Eight years of this data 
is considered for training and two years for testing. The TDS and SAR 
monthly time series are shown in Fig. 3. Hind et al. (2018) checked that 
previous studies have used different neural network (ANN) models to 
forecast TDS (Asadollahfardi et al. 2011; Asadollahfardi et al. 2017; 
Ghavidel and Montaseri. 2014; Kalin et al. 2010; Najah et al. 2013), So 
the power of LSTM can be utilized. LSTM  is a kind of artificial recurrent 
neural network used to learn long term dependencies and remember 
the past information also while predicting the future values, takes this 
past information into account (Hochreiter and Schmidhuber. 1997). This 
model has been developed for different climate scenarios using Python 
programming language and LSTM method and Keras Deep Learning 
Library. The steps for normalizing data and dividing data for steps of 
training, testing and formation of the LSTM model are summarized as 
follows. 

 

 
Fig. 3. Monthly observed TDS and SAR. 

 
2.8. Creating LSTM model 
 

LSTM is able to remove and add information to the cell arranged by 
a structure named a gate. The first step in the LSTM is to decide what 
kind of information is going to remove from the cell. This decision has 
been made by the sigmoid layer called the layer of forget gate, where 
ℎ𝑡 − 1 and 𝑥𝑡. ℎ𝑡 − 1 is the output value of the previous layer and 𝑥𝑡 is 
the input value that will enter the layer. The forget gate function is 
expressed as a function 𝑓𝑡 which can be written as Eq. 6 (Puriyanto et 
al. 2019). 

𝑓𝑡 = ([ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑓 )        (6)                                                   

The next step is to decide what kind of information is going to store 
in the cell. First, the sigmoid layer is named the input gate layer while 
decide which value to update is written as 𝑖𝑡, tanh layer will create a 
vector of the new candidate value that is written as C𝑡, both will be 
combined to update the cell. The functions 𝑖𝑡 and C𝑡 could be written in 
the following Eq. 7 (Puriyanto et al. 2019). 

𝑖𝑡 = ( .[ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑖 )     

𝐶 ̌ 𝑡 = tanh (𝑊𝐶 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝐶 

                                              
(7) 

The next step would be to update the old cell value 𝐶𝑡 − 1 to the 
new cell value 𝐶𝑡. The function 𝐶𝑡 can be written as the Eq. 8. 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶 ̌ 𝑡 (8) 

The final step is to decide which information will be released. The output 
will be based on cell but filtering needs to be done. First, run on the 
sigmoid layer which decides which part of the cell to output is written as 

𝑜𝑡. Next, enter the cell past the tanh(𝐶𝑡) and multiply it by 𝑜𝑡 written as 

ℎ𝑡. Functions 𝑜𝑡 and ℎ𝑡 can be expressed in Eq. 9. 

𝑜𝑡 = ( .[ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑜 )                                                                     

ℎ𝑡 = 𝑜𝑡 × tanh (�̌� 𝑡) 

                                                  
(9) 

where, xt = input; ht = hidden state; ct = cell state; f = forget gate; g = 

memory cell; i = input gate; o = output gate… 𝑊𝑓, 𝑊𝑐, 𝑊𝑖, 𝑊𝑜 called 
weight and 𝑏𝑓, 𝑏𝑐, 𝑏𝑖, 𝑏𝑜 called bias that are obtaining in training and 
testing process. 𝜎 is the sigmoid activation function. The architecture of 
LSTM for the regression purpose can be seen in Fig. 4. 
 
2.9. Data normalization 
 

Going by the rule of thumb, whenever a neural network is used, the 
data should be normalized or scaled. For this purpose Min_ Max_ 
Scaler class from the Sklearn_ preprocessing library would be used to 
scale the data between 0 and 1. Meanwhile, the feature_range 
parameter is applied to determine the range of the scaled data 
parameter (Hind et al. 2018). The data has been preprocessed and it is 
divided into training and test sets by train_test_split method of Scikit 
learn. A class LSTM (from keras.layers imported LSTM) defined and 
comprised of multiple layers. LSTM layers added to the model along 
with a dense layer that predicts the future TDS parameter (Hind et al. 
2018).The LSTM algorithm trained on the training set. Next, the model 
used to predict on the test set. The resulting predictions compared with 
the actual values of the test set to measure the trained model 
performance.  
 
2.10. Accuracy assessment 
 

In order to evaluate the predictive performance of the IHACRES  
and LSTM-RNN models, three performance measures have been 

used. The performance measures in Eqs. 10-12 show the accuracy of 
model’s predictions by comparing the actual parameter’s value (F𝑡) and 
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the simulated value (𝐴𝑡) for sample 𝑡, and the number of samples (𝑁) 
was included in some of the measures to get normalized values, which 
could be useful when comparing different models. Firstly, Root Means 
Squared Error (RMSE) was used to evaluate the average performance 
of the model among different testing samples. Mean Absolute Error 
(MAE) estimates the average magnitude of the errors in a set of 
forecasts aside from their direction. It evaluates accuracy for 
consecutive variables. 

 

Fig. 4.The RNN model proposed for predicting TDS and SAR. 

MAE is the arithmetic average over the verification sample of the 
absolute values of the differences among the forecast and the 
corresponding observation. The coefficient of Determination (R2) was 
used to estimate the correlation between observation and simulation 
(Asadollahfardi et al. 2017). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑡 − 𝐹𝑡)2𝑁

𝑡=1 )                                                          
                                            (10) 

MAE =
1

N
∑ |At − Ft|N

t=1                                                 (11) 
 

R2 = 1 −
∑ (At−Ft)2N

t=1

∑ (At−A)2N
t=1

                                                                       
                                            (12) 

where, 𝑁 is the number of data; 𝐴𝑡 is the actual value of data and 𝐹𝑡 is 
the predicted data (Hind et al. 2018). 
 
3. Results and discussion 

In this section, the results of this study including climate parameter 
forecasting, precipitation and temperature variations, runoff forecast 
with IHACRES model, TDS, SAR forecasts with artificial neural network 
model are shown respectively. 
 
3.1. Prediction of climate parameters in future duration  
 

The lowest decrease in precipitation is -1.33 in the spring of the 
2053 period the weight combination model and the lowest increase in 
rainfall of +1.55 in the winter of the 2020 period is the GFDL-CM3 
model. Winter rainfall in the CanESM2, GFDL-CM3 and MIROC-ESM-
CHEM models increased in the 2020 period and decreased for the rest 
of it. In the RCP4.5 weight combination model, precipitation changes of 
-35.31 to 15.88 % are expected. Under the RCP6 scenario, precipitation 
changes is reported from 77.34 % in the fall during 2020 of the weight 
combination model to 34.26 % in the summer of the 2053 FIO-ESM 
model. In winter, all models, except the GFDL-CM3 in 2020, predict a 
downward trend for rain. The RCP6 weight combination model shows 
precipitation changes from +42.37 to -18.36. Rainfall changes under the 
RCP8.5 scenario was observed from +198.4 % in the spring of the 2020 
of GFDL-CM3 model to -33.02 in the summer of the 2020 CanESM2 
model. In the winter, all models except the MIROC-ESM-CHEM in the 
2020 period, which has an increasing trend, are declining. Changes in 
precipitation of the weighted combination model have been reported 
from 61.99 % to 14.42 %. It can be seen that most of the climate models 
predict an increasing trend in the temperature parameter. Temperature 
changes compared to the observation period under the RCP4.5 
scenario from +5.26 C in the summer 2053 by GFDL-CM3 model to -
0.546C in the winter 2020 by FIO-ESM model is forecasted. The FIO-
ESM model reported the lowest temperature decrease in all three 
scenarios. Temperature changes under the RCP6 scenario was 
observed from +4.63 C in the summer during 2053 using the GFDL-
ESM2 model to +0.384. C in the winter 2053 by FIO-ESM model. 
Temperature changes under the RCP 8.5 scenario from +6.747 C in the 
fall 2053 by GFDL-CM3 model to -0.27C in the winter 2020 by 
2CanESM model were reported, The GFDL-CM3 model predicts the 
highest temperature increase in all three scenarios. In the spring, 
summer and fall seasons, all models predict an upward trend. In winter, 
with the exception of the 2020 FIO-ESM models under the RCP4.5 
scenario and the 2020 CanESM2 model under the RCP4.5 and RCP8.5 
scenarios, the rest of the models report an upward trend for future 
temperatures. These parameters changes during different seasons of 
the year are shown in Tables 3 and 4. 

 
3.2. Changes in precipitation and temperature in weighted model 
 

The weight combination model is considered to represent four 
climate models for each climate scenario as well as for each period in 
the future, and changes in the prediction of precipitation and 
temperature parameters with its observed value is shown in Fig.5. 
Meanwhile, Climate scenarios are considered as linear graphs and 
observed values are as columns. As the results of the three scenarios 
of the weight combination model show the long-term monthly rainfall 
under the RCP8.5 scenario reports a further decrease compared to 
RCP4.5 and RCP6. Also, rainfall fluctuations under RCP8.5 scenario 
are higher than the other two scenarios. The 2020 weight combination 
model predicts an upward trend compared to the basic period during 
the summer in all three scenarios while during the spring in the RCP4.5 
and RCP6 scenarios. In other cases, decline in rainfall is expected. 
During the 2053, an increasing trend was predicted for RCP6 in spring 
season and for RCP8.5 in fall and summer and in the other cases, the 

changes in rainfall are decreasing. Decline in long-term average rainfall 
decrease for the 2053 period is higher than the 2020 period. Increasing 
temperature changes under the RCP8.5 scenario are much higher than 
the other scenarios, so that, in the first period under the scenarios of 
RCP4.5, RCP6 and RCP8.5, the temperature is increased respectively 
by 1, 1.5 and 2 0C whereas in the second period, the temperature raised 
of 2, 3 and 4 0C respectively. 

 
3.3. Prediction of runoff with IHACRES model 
 

IHACRES model is a catchment-scale rainfall – run off model 
whose  purpose is to characterize the dynamic relationship between 
rainfall and stream flow, using rainfall and temperature (or potential 
evaporation) data, and to predict stream flow. It can be used to fill gaps 
in data, extend stream flow records, as well as explore the impact of 
climate change and identify effects of land use changes (Nazaripooya 
et al. 2015). 

Table 3. Increasing and decreasing changes of precipitation in climate models by season. 

Scenario 

Time First duration (2020-2052) Second duration (2053-2085) 

Model CanESM2 FIO GFDL MIROC 
Weighted 

model 
CanESM2 FIO GFDL MIROC Weighted model 

RCP 4.5 

Winter 2.96 -12.60 1.55 1.75 -3.45 -3.47 -17.62 -4.83 -11.47 -8.60 
Spring -2.14 -16.45 4.16 32.83 7.58 -3.03 -16.75 -4.58 17.43 -1.33 
Summer 43.36 18.55 16.19 10.41 15.88 7.59 -34.26 -59.75 -48.72 -35.31 
Autumn 16.70 -5.30 -20.69 -14.22 -6.39 40.45 -13.52 -46.40 -26.77 -6.40 

RCP 6 

Winter _ -16.51 1.55 -11.61 -12.73 _ -17.62 -4.57 -23.77 -18.27 
Spring _ -18.65 4.16 17.12 0.92 _ -16.75 -1.00 30.29 5.08 
Summer _ 77.34 16.19 -24.89 42.37 _ -34.26 -2.75 15.48 -18.36 
Autumn _ 12.15 -20.69 5.26 -4.81 _ -13.52 2.20 -7.82 -9.96 

RCP 8.5 

Winter -11.92 -6.43 -23.81 1.25 -10.72 -3.88 -22.95 -29.61 -15.02 -19.04 
Spring -33.02 -11.12 -30.32 17.28 -13.13 -29.94 -15.85 -29.47 20.04 -14.42 
Summer 147.91 -31.66 198.41 -15.51 58.41 136.03 -6.77 141.45 29.24 61.99 
Autumn 0.31 17.15 -26.64 1.11 -1.13 13.34 21.78 -26.80 21.10 7.35 

⋆Negative values indicate the decrease whereas positive values show the increase 
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      (a)            (b) 

  

(c)           (d) 

Fig. 5. (a) Predicted Rainfall with weighted model in different RCPs in (2020-2052); (b) Predicted Temperature with weighted model in 
different RCPs in (2020-2052); (c) Predicted Rainfall with weighted model in different RCPs in (2053-2085); (d) Predicted Temperature with 

weighted model in different RCPs in (2053-2085). 

The important limitations are the need for a large amount of input 
data and the time required for model development, calibration, and 
simulation. As shown in Table 2, the average discharge of the 
Khorramrood river in the Aran station is 3.29 m3/s and the maximum 
and minimum discharge are 29.66 and 0.6 m3/s, respectively. In order 
to calibrate and validate the rainfall-runoff model of IHACRES, the 
monthly data of temperature, rainfall and discharge data during the 
1983–2015 period were used. The calibration parameters of the 
IHACRES model are shown in Table 5. During this period, various years 
were tested to develop the model. The results showed that the period 
1986/5 to 2004/10 with the correlation coefficient (R) and the error 
criteria presented in Table 6 had a good performance compared to the 
observation period. Therefore, these data were selected for the 
calibration and the rest of the data were considered for testing. After 
calibrating the rainfall-runoff model parameters, the rest of the data was 
used to validate the model. According to the calibration and validation 
results of the IHACRES model, the predicted values of discharge in 
climate models were performed and its comparison with the 
observational data is shown in Table 7. Under the RCP4.5 scenario, the 
average discharge value is 2.77 m3/s while the maximum predicted 
discharge is 24.95 m3/s and the minimum discharge is zero during the 
next period. In the second futures period, the average discharge is 2.6 
m3/s whereas the maximum discharge is 29.5 m3/s and the minimum 
discharge of zero is predicted. 

Table 5. IHACRES calibration parameters. 

Optimum 
value 

Parameter 
range 

Explanation Parameter 

0.0021 - 
Humidity storage 

capacity 
C 

1.02 1-30 Drying time T(W) 

3.2 0-4 
Watershed temperature 

coefficient 
F 

0.02 0-0.5 
Humidity threshold 

coefficient 
I 

1.03 1-3 Soil humidity intensity P 

-0.188 - Drought Index a(s) 

2.15 - Peak index B(s) 

0.616 - Slow down flow T(s) 

2.9 - Volume ratio V(s) 

20 - Reference temperature Tref 

 

Table 6. Performance criteria in IHACRES model. 

NSE MAE RMSE R2 Performance criteria 
0.79 1.20 2.02 0.93 Calibration 

IHACRES 
0.68 2.29 3.24 0.80 Verification 
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Table 4. Increasing and decreasing changes of temperature in climate models by season. 

Scenario 

Time First duration (2020-2052) Second duration (2053-2085) 

Model 
CanESM

2 
FIO GFDL 

MIRO
C 

Weighted 
model 

CanESM
2 

FIO GFDL 
MIR
OC 

Weighted 
model 

RCP 4.5 

Winter -0.378 -0.546 1.487 1.049 0.346 2.819 0.252 2.862 1.527 1.931 
Spring 0.453 0.186 1.725 1.254 0.943 2.660 1.009 3.451 2.606 2.491 
Summer 1.892 0.672 2.806 1.730 1.831 2.973 0.863 5.261 3.275 3.188 
Autumn 2.158 0.933 2.268 1.486 1.850 3.457 0.732 4.167 2.543 2.977 

RCP 6 

Winter _ 0.384 1.459 0.888 0.802 _ 1.148 3.128 2.001 1.997 
Spring _ 0.780 1.740 1.113 1.843 _ 1.209 3.147 2.231 2.813 
Summer _ 0.805 2.712 1.495 2.843 _ 1.402 4.636 2.906 4.093 
Autumn _ 0.901 1.903 1.038 1.427 _ 1.276 3.902 2.099 2.506 

RCP 8.5 

Winter -0.377 0.729 2.572 1.360 1.013 4.244 1.841 4.453 2.861 3.435 
Spring 1.979 0.944 2.391 1.530 1.769 3.886 2.325 4.680 3.737 3.739 
Summer 2.112 1.468 3.050 2.210 2.241 4.758 2.995 6.747 4.616 4.883 
Autumn 2.579 1.691 2.730 1.528 2.268 5.416 2.753 6.237 3.676 4.807 

⋆Negative values indicate the decrease whereas positive values show the increase 
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Therefore, the average discharge in the first and second periods 
shows a decrease of 15.8 % and 20.97 %, respectively, compared to 
the observed discharge. Under the RCP6 scenario, the weight 
combination model during the next period has predicted the average 
discharge of 3.01 m3/s, the maximum discharge of 37.1 m3/s while the 
minimum discharge of zero for the Khorramrood river. The average, 
maximum and minimum discharge values are predicted respectively by 
2.4, 24.05 and zero m3/s for the second future period.  Therefore, the 
average discharge during the first and second period shows a decrease 

of 8.51 and 27.05 percent, respectively, compared to the observed 
discharge. Under the RCP8.5 scenario, in the first future period, the 
average, maximum and minimum values of discharge were, 
respectively, 3.08, 26.68 and zero m3/s. In the second future period, 
these values are predicted of 2.8, 34.02 and zero m3/s, respectively. 
Therefore, the average discharge value for the first and second periods 
shows a decrease of 6.38 and 39.89 percent, respectively, compared 
to the observed discharge (Fig. 6). 

  
(a)         (b) 

 
 (c) 

Fig. 6. Predicted runoff of weighted combination model in different RCPs. 

Table 7. Comparing prediction and observation runoff (m3/s) in RCP scenarios. 
Duration 2020-2052 2053-2085 

RCP 
scenarios 

Observed 
runoff 

CanESM FIO GFDL MIROC 
Weighted 
combination 
model 

CanE
SM 

FIO GFDL MIROC 
Weighted 
combination 
model 

RCP 4.5 

3.29 

2.87 2.59 3.52 3.00 2.77 3.02 2.62 2.79 2.82 2.6 

RCP 6 - 2.66 2.90 3.41 3.01 - 2.32 2.68 3.09 2.4 

RCP 8.5 2.24 3.10 2.33 3.71 3.08 2.44 3.08 2.33 4.62 2.8 
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(c) (d) 

Fig. 7.  (a) Observed and predicted SAR correlation in calibration duration in LSTM-RNN model; (b) Observed and predicted SAR correlation 
in verification duration in LSTM-RNN model; (c) Observed and predicted TDS correlation in calibration duration in LSTM-RNN model; (d) 

Observed and predicted TDS correlation in verification duration in LSTM-RNN model. 

 Table 8. Selected model for predicting TDS and SAR. 

TDS SAR Selected models 
RNN RNN Network 
Q(t) , Q(t-1),Q(t-2) P(t),P(t-1) Q(t), Q(t-1), P(t),p(t-1) Input 
2 2 Dense layer 
Relu Relu Activation layer 
100 50 Number of neurons 
Rmsprop Rmsprop Optimizer 
5000 1000 The number of repetitions 

 
3.4. Prediction of TDS and SAR with LSTM-RNN 
 

The neural network model was calibrated for the parameters of 
sodium adsorption ratio (SAR) and total dissolved solids (TDS) in the 
base period (2005-2015). The selected model characteristics are 
presented in Table 8. In this study, observed discharge, rainfall and 
their monthly delays are chosen for the input of the model. In order to 
calibrate each of the quality parameters, up to 1000 runs in different 
models with inputs, networks, activation layer, the number of Dense 
layer, the number of different neurons were taken. The results of the 
calibration and validation steps of both parameters are shown in Table 
9 and Fig.7. After calibrating and validating the model for the basic 
period 2005 to 2015, the input data of the next stage including rainfall, 
temperature and discharge time series and two months delay was used 
as an input to the LSTM-RNN model to predict TDS and SAR 
parameters in the next period 2020-2030 (Fig. 8). In the base period, 
the average, maximum and minimum long-term TDS values are 305, 
410 and 78 mg/L, respectively. The results of the TDS forecast for 2020 
to 2030 under the RCP4.5 scenario show the values of 295, 410 and 
263 mg/L, respectively. The RCP6 results are respectively 302, 410 and 
257 mg/L and under the RCP8.5 scenario, are equal to 292, 410 and 
257 mg/L. Meanwhile, in the basic period, the average, maximum and 
minimum long-term SAR values are 0.45, 1.27 and 0.08, respectively. 
While for the RCP4.5 scenario 0.42, 0.93 and 0.14, and for the RCP6 
are 0.44, 0.94 and 0.1 respectively and for the RCP8.5, the values are 
0.42, 0.93 and 0.15. 

 
        (a) 

 
                  (b) 

Fig. 8. (a) Predicted TDS in different RCP scenarios; (b) Predicted 
SAR in different RCP scenarios. 

 

Table 9. LSTM Performance criteria in calibration and verification 
duration. 

Parameters Calibration 
Performance criteria R MAE RMSE NSE 
TDS 0.95 0.054 0.1 0.69 
SAR 0.81 0.57 0.19 0.53 

Parameters Verification  
Performance criteria R MAE RMSE NSE 
TDS 0.98 0.019 0.06 0.61 
SAR 0.83 0.25 0.16 0.51 

 
4. Conclusions and remarks 
 

In this study, the output of four climate models of the IPCC Fifth 
Assessment Report (AR5) under RCP4.5, RCP6 and RCP8.5 scenarios 
for precipitation and temperature parameters were extracted in the base 
period and compared with observational climate data, then, the models 
were evaluated based on error criteria and the observational data.  The 
results indicated that despite of the fine ability of all models in 
simulation, but the difference in output obtained from each model shows 
the uncertainty of climate models. The reduction of model uncertainty 
was done by MOTP method. The monthly rainfall| and temperature 
parameters for future periods 2020-2052 and 2053-2085 were obtained 
according to the output of the weight combination model. In order to 
simulate runoff in the basic period 1983-2015, the rainfall-runoff model 
of IHACRES was calibrated and validated. In order to evaluate and 
predict the water quality status of Khorramrood river in terms of TDS 
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and SAR indicators, LSTM –RNN method was used in the Python 
programming environment. The performance of the artificial neural 
evaluated and the optimal model predicted TDS and SAR for the future 
period of 2020-2030. The results of predicting TDS values show that 
despite the small changes in the average and maximum value of this 
parameter in the future period compared to the observation period, the 
minimum value of this parameter has increased sharply. However, the 
SAR parameter does not show significant changes in these values, and 
in both parameters, increasing changes are observed in 2024 and 
2025. Prediction of river quality parameters in comparison with Baek et 
al. (2020) and Hu et al. (2019) researches showed that LSTM-RNN 
method is a suitable method for predicting water quality parameters. In 
general, in less populated areas, the rate of changes in water quality 
parameters is less than in populated areas, so the amount of changes 
in TDS and SAR in Aran station in case of non-industrialization of the 
area and control of pesticides and observed water right of Anahita dam, 
in future periods does not increase indiscriminately and does not 
require structural measures to control, but always non-structural 
strategies to maintain water quality is essential. 
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