Simulation of photocatalytic degradation of methylene blue in planar microreactor with integrated ZnO nanowires

Fayazeh Rabanimehr, Mehrdad Farhadian*, Ali Reza Solaimany Nazar, Elham Sadat Behineh
Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

ARTICLE INFO

Article history:
Received 6 February 2021
Reviewed 17 April 2021
Accepted 29 May 2021

Keywords:
Planar microreactor
ZnO nanowires
Simulation
Langmuir–Hinshelwood
COMSOL Multiphysics

Article type: Research Article

© The Author(s)
Publisher: Razi University

ABSTRACT

In photocatalytic microreactors the catalyst layer is obtained by integration of nanostructure films of semiconductors. One of these nanostructures that have a good photocatalytic activity is ZnO nanowires. The photocatalytic degradation of methylene blue in a continuous flow microreactor with ZnO nanowires deposited film is simulated. A finite element model is developed using COMSOL Multiphysics version 5.3 software to simulate the microreactor performance. The kinetic law of the photocatalytic reaction is assumed to be Langmuir–Hinshelwood. The kinetic constants kLH, a and K are determined 1.43 × 10^{-7} mol/m²s and 7.5 m²/mol, respectively. The percent of average absolute deviation of the model in predicting the methylene blue outlet concentration obtained about 0.12% mol/m². The model showed a very good agreement with the published experimental data. The effect of microreactor depth, methylene blue inlet concentration and flow rate on the methylene blue degradation is also investigated. The simulation results showed that the microreactor with shorter depth and lower values of inlet concentration and flow rate has higher efficiency. Thiele modulus and Damköhler number are both estimated lower than 1. It indicates that the photocatalytic reactions occur without internal and bulk mass transfer limitations.

1. Introduction

Nowadays, due to the increasing demand for clean water, water purification is of particular importance (Wang et al. 2014). However, many contaminants in water and wastewater cannot be treated efficiently by conventional methods (Ali et al. 2016; Jewell et al. 2016; Wang et al. 2016). As a result, the photocatalytic water purification capable of decomposing and mineralizing a wide range of organic pollutants has absorbed attentions (Wa ng et al. 2014). In conventional slurry photocatalysts, photocatalysts nanoparticles are homogeneously suspended in an aqueous solution. However, this approach is not efficient due to the non-uniform distribution of light and low photon transfer. Also, recycling the suspended photocatalyst nanoparticles after pollutant removal is a difficult and time consuming process (Dijkstra et al. 2002; Mills et al. 1998). Therefore, it is highly interesting to immobilize the photocatalysts on a solid surface in the form of a film coating. Performing the photocatalytic reactions inside the microreactors with integrated photocatalyst deposited film, has advantages over than in large-size reactors. Short molecular diffusion distance, high surface to volume ratio, fast mixing and high illumination homogeneity are some of the many features of these types of reactors (Wang et al. 2014). Regarding these advantages, integration of nanoporous films of semiconductors like TiO₂ (Krivic et al. 2013) and ZnO (Zhang et al. 2013) into photocatalytic microreactors has been absorbed considerable attentions for organic pollutants removal from water.

Charles et al. (2011) investigated salicylic acid photodegradation reaction in a microchannel reactor with immobilized TiO₂ as...
photocatalyst. They observed that higher salicylic acid photodegradation efficiency can be achieved in higher incident light intensity and lower pollutant concentration and flow rate. They also determined the kinetic constant of salicylic acid photodegradation reaction. Their observations showed that the reaction rate constant is only dependent on incident light intensity. Corbel et al. (2014) studied mass transfer in microchannel photocatalytic reactor experimentally and numerically. They investigated the salicylic acid removal in the presence of immobilized TiO₂ nanoparticles as photocatalyst. The results of the numerical simulation showed a very good representation of the experimental data. They also established a correlation for Sherwood number that is reliable for all microchannel geometries. Jayamohan et al. (2015) investigated the performance of a planar microreactor with titanium nanotube array (TNA) and TiO₂ nanoparticulate as photocatalysts for methylene blue (MB) degradation and found that the microreactor with TNA photocatalyst has better performance compared to TiO₂ nanoparticulate. They also simulated the performance of the microreactor and deduced that MB degradation efficiency is not affected by mass transfer limitation. He et al. (2010) demonstrated that ZnO nanowires (NWs) could be grown on the inner wall of capillaries and then coated by TiO₂ nanoparticles. This composites photocatalyst showed a reasonable performance.

Han et al. (2013) applied a planar microreactor operating in a close loop with integrated ZnO NWs over a glass substrate for photodegradation of MB. They found that the optimal photocatalytic conditions of microreactor can be obtained with annealed ZnO NWs subjected to UV irradiation. Because the structure of annealed ZnO NWs has better crystallinity and its surface has lower defects compared to unannealed one. This study showed that the ZnO NWs integrated microreactor exhibits more photodegradation efficiency over using suspended ZnO NWs. As the fabrication of microreactors is costly, difficult and time-consuming process, simulation of the microreactors, can be useful for predicting their performances. However, in spite of many experimental works done on photodegradation of organic pollutants in microreactors, simulation and modeling the performance of these systems remains limited.

The aim of this work is to simulate the performance of the integrated ZnO NWs planar microreactor studied by Han et al. (2013). For this purpose, a computational 2-dimensional (2-D) model is setup using COMSOL Multiphysics version 5.3 software to predict the concentration of MB at the outlet of the microreactor. The catalytic surface of the microreactor is assumed to be flat rather than the nanostructured. The kinetic reaction rate constants are estimated by minimization of an objective function. The objective function is defined on the sum of squares of residual concentrations. Dimensionless numbers and the effect of microreactor geometry, inlet concentration and flow rate on MB degradation efficiency are also investigated.

2. Microreactor specifications

The simulated microreactor is planar with annealed ZnO NWs catalytic surface at the bottom, which is subjected to UV light (365 nm) irradiation. The ZnO NWs have been grown on a glass substrate using hydrothermal method and the microreactor has been made from polydimethylsiloxane using soft lithography method. The inner diameter of inlet and outlet tubes of the microreactor is 0.89 mm. Fig. 1 shows the 3-D geometry of the investigated microreactor. Table 1 shows the microreactor geometric specifications. This microreactor is operated in a closed loop and MB solution enters with a fixed flow rate of 400 μl/min. According to the results, the microreactor volume is 75 mm³ and the residence time of MB solution in the microreactor is 11.25 s in each cycle. The microreactor totally operates in 24 cycles and the MB concentration at the outlet of the microreactor was measured every 4 cycles (Han et al. 2013).

2.1. Numerical modeling

The photodegradation of MB in a 2-D domain has simulated by employing finite element method using COMSOL Multiphysics version 5.3 software. The 2-D model domain of the microreactor is shown in Fig. 2.

2.2. Assumptions

The assumptions made for the model are summarized as follows: Due to dilution of the solution, the physical properties of water are considered. The steady state condition is considered. It is assumed that the effects of the capillary force are negligible in the microreactor.

It is considered that the photocatalytic degradation of MB takes place on the side covered with photocatalyst film in the microreactor. It is assumed that the catalytic surface is smooth, unlike it is nanostructured. The catalytic surface reaction is considered to be equal to the boundary flux at the catalytic surface.

2.3. Model

A single phase, Newtonian and incompressible flow has been considered in the microreactor. The Navier–Stokes is considered here. The equations are used for conservation of momentum and mass respectively, to simulate the laminar flow through the microreactor.

\[\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = -\nabla p + \mu \nabla^2 \vec{u} \]

(1)

where, \(\rho \) is the fluid density, \(\mu \) is the dynamic viscosity of the fluid and \(p \) is the fluid pressure. \(\rho = 1000 \text{ kg/m}^3 \) and \(\mu = 0.001 \text{ Pas} \) are used in calculations. The boundary conditions are imposed as follows: at the inlet of the microreactor, the inlet mass flow rate is known so the inlet velocity is uniform in \(y \) direction and no-slip boundary condition is considered at the channel surfaces. Also, the relative fluid pressure at the outlet of the microreactor is zero.

A convection-diffusion equation is adopted to describe the species mass transfer in the bulk of the microreactor:

\[\frac{\partial c_j}{\partial t} + \nabla \cdot (\vec{u} c_j) = D \nabla^2 c_j + \nabla \cdot (\vec{D} \nabla c_j) \]

(2)

where, \(c_j \) is the concentration of species and \(D \) is diffusion coefficient of the species. In Eq. 3, steady-state condition is considered. The concentration of MB at the inlet of the microreactor is known and the MB concentration gradient at the outlet of the microreactor is equal to zero. At the reactor walls insulating condition is considered. The degradation reaction of MB is done at the ZnO NWs catalytic surface of the microreactor. The photocatalyst absorbs a photon with energy equal to or exceeded than its band gap energy and produces the electron and hole in its conduction and valence bands, respectively. The photogenerated holes oxidize water and produce hydroxyl radicals. Also, electrons produce the superoxide radicals by reduction of dissolved oxygen. The generated free radicals degrade most organic water pollutants like MB at the surface of the photocatalyst. As mentioned in assumptions, the catalytic surface reaction \(r_s = (\text{mol/m}^2/s) \) is considered to be equal to the boundary flux at the catalytic surface:

\[r_s = -\nabla \cdot \vec{D} c_s \]

(3)

where, \(c_s \) is surface concentration of MB. The rate of removal of MB is described by Langmuir–Hinshelwood (L-H) kinetic model which is an adsorption-kinetik model and is applicable for photocatalytic removal of organic pollutants from water (Corbel et al. 2014):

\[r_s = \frac{k_{ads} k_{reac} c_{exp.}}{1 + k_{ads} c_{exp.}} \]

(4)

where, \(K \) is adsorption constant in m³/mol and \(k_{reac} \) is the surface reaction rate constant in mol/m²/s, which is calculated from \(k_{reac} / \kappa \), where \(k_{reac} \) is the volumetric reaction rate constant in mol/m³/s and \(\kappa \) is the specific surface area in 1/m. To predict the average MB concentration at the outlet of the microreactor, the Langmuir–Hinshelwood kinetic constants (\(k_{ads} \) and \(K \)) must be determined previously. For determination of these parameters, an objective function is defined as:

\[0.5 \sum_i \left[\frac{1}{n} \left(\frac{C_{out, i}}{C_{in, i}} \right) \right] \]

(5)

where, \(C_{in, i} \) and \(C_{out, i} \) are calculated and experimental MB concentration at the outlet of the microreactor at each residence time, respectively and \(n \) is the number of experimental data points. For determination of \(k_{ads} \) and \(K \), an initial guess was considered for each of them and the objective function was calculated, then the value of parameters was modified several times in a way that the objective function reached its minimum value. The final values of \(k_{ads} \) and \(K \) determined 1.43x10⁻⁷ mol/m³s⁻¹ and 7.5 m³/mol, respectively. For a complete triangular mesh, the extremely fine mesh size was chosen.

3. Results and discussion

3.1. Validation of proposed model

At the given microreactor geometry, the average outlet concentration of MB (Cout) was predicted for each residence times. The MB inlet concentration (Cin) of 0.03 mol/m³ (Han et al. 2013), the
diffusion coefficient of 1.6 × 10⁻⁶ m²/s (Jayamohan et al. 2015) and the
determined kinetic rate constants are considered. Fig. 3 shows the
predicted and experimental concentration of MB at the outlet of the
microreactor as a function of residence time. As shown in this figure,
there is a very good agreement between experimental data and model
results. The percent of average absolute deviation (AAD, %) of the
model in predicting the experimental data is determined 0.12 % mol/m³
using Eq. 7:
\[
AAD = \frac{1}{n} \sum_{i=1}^{n} \frac{|c_{i}^{\text{calc}} - c_{i}^{\text{exp}}|}{c_{i}^{\text{exp}}} \times 100
\]
As illustrated in Fig. 3, the deviation between the model results and the
experimental data points is low at all residence times. As expected, C_out
decreases with increasing the residence time and it corresponds to the
longer contact time of MB in the photocatalytic microreactor.

3.2. Velocity distribution

Fig. 4 shows the velocity profile in the microreactor. As shown in
this figure, the flow regime is laminar. The velocity component
perpendicular to the photocatalytic surface is assumed to be zero and
the velocity profile parallel to the photocatalytic surface, follows a
Gaussian distribution.

3.3. Concentration distribution

Fig. 5 shows the concentration distribution of MB in the 2-D domain
of the microreactor at residence time equal to 11.25 s (first cycle). The
molecular diffusion of MB from the bulk towards the catalytic surface of
ZnO NWs can be seen in this figure. As the photocatalytic degradation
reaction happens at the catalytic surface, the MB concentration reduces
at the bottom wall of the microreactor. The average outlet concentration
of MB at this low residence time is about 0.027 mol/m³. In this residence
time, a concentration gradient is formed in the x-direction, hence the
reactant molecules diffuse to the catalytic film, but the residence time is
not enough to allow the conversion of all the reactant molecules.

3.4. Characteristic times

For further scaling analysis on the investigated microreactor, the
characteristic times are estimated and summarized in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Definition</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence time</td>
<td>(t_R)</td>
<td>(V/Q)</td>
<td>45-270 s</td>
</tr>
<tr>
<td>Diffusion time (in the fluid)</td>
<td>(t_D)</td>
<td>(h^2/D)</td>
<td>62.5 s</td>
</tr>
<tr>
<td>Effective diffusion time</td>
<td>(t_{D_x})</td>
<td>(h^2/D_x)</td>
<td>5.5 s</td>
</tr>
<tr>
<td>Reaction time</td>
<td>(1/k_{app})</td>
<td></td>
<td>90.9 s</td>
</tr>
</tbody>
</table>

As shown in Table 2, the value of reaction time is more than both
the values of diffusion time and effective diffusion time, so it can be
concluded that this microreactor is reaction limited and the diffusion of MB
molecules in the bulk of fluid and solid is done faster than the reaction.

Also, to investigate the mass transfer resistance within the
catalyst film, Thiele modulus has been calculated. Thiele modulus \(\phi =
(t_{D_x}/t_{app})^{0.5}\) represents the ratio of internal diffusion to kinetic time (Aillet
et al. 2015, Yusuf et al. 2019) and is estimated to be 0.24 that is lower
than 1. So it can be assumed that the reaction occurs in the catalytic
film without internal mass transfer limitations.

3.5. Parametric study

3.5.1. Effect of microreactor depth on MB degradation

As shown in Table 1, the depth of the microreactor is very low
\((h=0.1 \text{ mm})\) and its specific surface area has a higher value \((K=10
\text{ 1/mm}^2)\) compared to conventional reactors. To investigate the effect
of microreactor depth on MB degradation, the performance of the same
microreactor with different values of depth is simulated using COMSOL
Multiphysics software. The degradation of MB is defined as:
\[
\chi = \frac{C_0 - C_{out}}{C_0}
\]
where, \(X\) is the mean conversion ratio. By increasing the depth of
microreactor, the residence time of MB solution in the reactor will be
increase. The effect of microreactor depth on the MB degradation
constant flow rate is illustrated in Fig. 6. As shown in the figure,
increasing the depth of the microreactor leads to decreasing the MB
degradation. This can be explained by a lower mass transfer limitation
in microreactor with lower depth. To confirm this aspect, the average
mass transfer coefficients in microreactors with the depth of 0.1 and 0.2
mm are calculated using simulation results.
3.5.2. Effect of MB inlet concentration on MB degradation

The effect of MB concentration at the inlet of the microreactor on the degradation is investigated at different residence times. As illustrated in Fig. 7, in lower amounts of initial concentration, the microreactor has better efficiency. Because in lower amounts of inlet concentration, there are more active sites of photocatalyst in contact with MB molecules. As shown in the figure, with increasing the residence time, due to the occupation of active sites by MB molecules, the changes in MB degradation decreases and the curves become plateau.

3.5.3. Effect of flow rate on MB degradation

Fig. 8 illustrates the effect of flow rate on the MB degradation in four cycles. As shown in the figure, the microreactor with the lowest flow rate has the highest value of MB degradation. This corresponds to longer residence time of MB solution at lower flow rates.

Han Zh., Li J., He W., Li S., Li Zh., Chu J., Chen Y., A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions, Microelectronic Engineering 111 (2013) 199-203.

Kuo T., Lin Ch., Kuo C., Huang M.H., Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts, Chemistry of Material 19 (2007) 5143-5147.

