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 In the current study, a new hybrid of the genetic algorithm (GA) and adaptive Neuro-fuzzy 
inference system (ANFIS) was introduced to model the discharge coefficient (DC) of triangular 
weirs. The genetic algorithm was implemented for increasing the efficiency of ANFIS by 
adjusting membership functions as well as minimizing error values. To evaluate the 
proficiency of the proposed hybrid method, the Monte Carlo simulations (MCS) and the k-fold 
validation method (k=5) was applied. The results of developed hybrid model indicate that the 
weir vortex angle, flow Froude number, the ratio of the weir length to its height, the ratio of the 
channel width to the weir length and ratio of the flow head to the weir height are the most 
effective parameters in the DC estimation. The quantitative examination of the proposed 
hybrid method indicates that the Root Mean Square Error (RMSE) and Mean Absolute 
Percent Error (MAPE) are as 0.016 and 1.647 (respectively) for the superior model. Besides, 
the Froude number is found as the most effective variable in DC modeling through the 
quantitative analysis. A comparison of the developed hybrid ANFIS-GA with the individual 
ANFIS model in the DC estimation indicates the hybrid model outperformed than the individual 
one.  
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1. Introduction 
 

Weirs are installed perpendicular to the longitudinal direction of 
open channels to measure and adjust the flow. When the flow ap 
proaches to the normal weir location, it overflows the weir crest towards 
the channel downstream. Generally, normal weirs are classified into the 
broad crested and sharp-crested types. The sutro, circular, triangular 
and rectangular are di fferent plan form if the sharp-crested weirs. In 

general, the discharge coefficient (DC) is the most important parameter 
of weirs which many numerical, analytical and experimental studies 
have been conducted on it. One of the first stduies in examintaion of 
the passing flow over sharp-crested weirs was done by Re hbock 
(1929). He showed that the DC of this type of weirs is a function of the 
hydraulic and geo metric characteristics of the flow and weir, 
respectively. Generally, the effectiveness of ectangular sharp-crested 
weirs is less than triangular plan form weirs (TPFW). Furthermore, 
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various studies have been conducted on the DC and the hydraulic 
behavior of this type of weirs. Taylor (1968) conducted a a large number 
of experimental test to study the efficiency and hydraulic behavior of 
triangular labyrinth weirs (TLW). 

Hay and Taylor (1970) examined different shapes of the labyrinth 
form in plan weir. They stated that the triangular form in plan weir is 
more effectiveness in comaprison with the trapezoidal in plan weir. 
Tullis et al. (1995) conducted a study on the DC of TLW. They showed 
that the DC of TLW is a function of the hydraulic and geometric 
characteristics of the flow and weir, respectively. Wormleaton and 
Tsang (2000) experimentally studied the hydraulic behavior and the 
aeration efficiency of normal, triangular form in plan and rectangular 
form in plan weirs. Using a large number of experimental tests, Kumar 
et al. (2011) studied the hydraulic behavior and the DC of triangular 
form in plan weirs (TFPW). They developed an equation as a function 
of the hydraulic and geometric characteristics of the flow and weir,  
(respectively) for calculating the DC of this type of normal weirs. 
Recently, the machine learning approaches have been utilized as 
applicable powerful tools in solving complex nonlinear problems in 
different field of science. Moreover, the artificial neural network has 
been used by different researchers in pattern cognition of hydraulic and 
hydrological phenomena. For example, Khorchani and Blanpain (2005) 
employed the artificial neural network (ANN) to study the passing flow 
over a side weir (SW). Emiroglu et al. (2010) applied neuro-fuzzy model 
to predict the DC of TLW located on a rectangular channel. They 
determined the DC equation of these weirs as a function of the hydraulic 
parameters of the flow as well as the geometric characteristics of the 
main channel and SW. Emiroglu and Kisi (2013) predicted the DC of 
trapezoidal labyrinth SW using the Neuro-fuzzy model. Bagheri et al. 
(2014) analyzed the results of their experimental study on the DC of a 
rectangular SW using ANN. They found the Froude number of the SW 
upstream is the most effective parameter on the DC of sharp-crested 
rectangular SW. Additionally, Ebtehaj et al (2015) predicted the 
discharge capacity of rectangulat side weirs within a rectangulat flume 
through the gene expression programmming. Azimi et al. (2017a) 
simulated the discharge coefficient of wires on trapezoidal canals by 
means of extreme learning machine (ELM) model. Also, Akhbari et al 
.(2017) modeld the discharge capaciy of labyrinth weirs by using M’5 
model and neural network. The authors showed that the M’5 model had 
a better performance. Moreover, Azimi et al. (2019) applied the support 
vector machine (SVM) in order to estimate the discharge coefficient of 
side weirs located on trapezoidal conduits. They suggested a matrix to 
calculate the discharge coefficient.  

As seen, the analysis of the DC of TFPW is very important. In other 
words, using of artificial intelligence methods in predicting the DC of SW 
have very important notes which are discussed in this paper. In the 
current study, a hybrid method for modeling the DC of TFPW is 
provided. The mentioned model is developed by optimization of the 
adaptive neuro-fuzzy inference system (ANFIS) with a well-known 
evolutionary algorithm (i.e. genetic algorithm, GA). Besides, the 
superior model in estimation of the DC of TFPW is introduced and in 
the eventually the most effective variable on the DC is identified. 

 
2.  Materials and methods 
2.1. Adaptive neuro-fuzzy inference system (ANFIS 
 

A fuzzy system (FS) is defined based on the fuzzy if-then rules 
which cannot be explored by classical probability schemes. The first 
step in generating a FS is obtaining a set of fuzzy if-then rules. 
Consequently, having a method which is able to establish these rules 
is considered as a powerful tool. Meanwhile, neural networks due to 
their different training capability can make an appropriate connection 
between input and output variables. So, using a combination of the 
neural network and fuzzy inference system can be utilized as a powerful 
tool entitled ANFIS in different problems. In the ANFIS technique, the 
fuzzy part produces the connection between multi-inputs and single-
output variables and membership functions (MFs) parameters are also 
optimized by the neural network. For the first time, ANFIS was 
introduced by Jang (1993). The structure of this method for a model 
with two inputs is provided in Fig. 1. Valued of these two parameters 
fed by the input node are transformed using MFs to provide the output 
value. The MFs used in the current study is a Gaussian calculated by 
Eq. 1 (Jang. 1993): 
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where, ci and σi are prismatic parameters which their precise selection 
has a significant impact on modeling results and μ is the membership 
function. Similar to this process, the input y is also calculated (μNI(y)). 
After calculating membership functions, their values are multiplied by 
each other in the next layer as Eq. 2 (Jang. 1993): 

i ii M Nw ( x ) ( y ) ( i 1,2 )               (2) 

The result of the above-mentioned equation is firing strength. The 
normalized output of the Eq. 2 is normalized firing strength which is 
computed as (Jang. 1993): 

i
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In the next layer, the ratio of the ith fuzzy rule to sum of the i rule is 
calculated using the weighted factor (Eq. 3). By assuming the ith rule 
as the Eq. 4, the output of this node is calculated as Eq. 5 (Jang. 1993): 

1 1

1 1 1 1

If x is M and y is N , Then
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i i i i i iw f w ( p x q y r )                 (5) 

where, {ri, qi, pi} are the adjustable parameters through training part 
which are related to the consequent part. In the final stage, the total of 
all input parameters are provided as the output of the network. The final 
output of ANFIS is calculated as follows (Jang. 1993): 
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            (6) 

 

Fig. 1. Structure of ANFIS with two inputs. 

One of the methods widely used for producing initial fuzzy inference 
systems in ANFIS is the grid partitioning (GP) method. In this method, 
the input and output space are divided into specific spaces. 
Membership functions of all assumed variables are defined as previous 
experience and knowledge. The input and output data system can be 
optimized using membership functions. The learning process starts 
from the zero output and fuzzy rules and functions are learned during 
the learning process gradually (Cobaner. 2011).  

 
2.2. Genetic algorithm 

 
The GA is an evolutionary search framework formed based on the 

structure of genes and chromosomes. This algorithm for the first time 
was introduced by John Holland (1992). GA as a calculation-
optimization algorithm effectively searches various areas of the answer 
space with regard to a collection of answer space points in each 
computational iteration. In the search mechanism, although the 
objective function is not calculated at all considered points of the 
answer space, the calculated objective function for each point is 
involved in statistical average of the objective function in all sub-
locations. These sub-locations are averaged parallel to the objective 
function. This process results in the search space to trend toward areas 
in where the statistical average of the objective function is great and the 
possibility of the possibility existence of the absolute optimized point is 
higher, because in this method unlike one-way methods the search 
space is searched comprehensively and subsequently there is less 
probability for converging to a local optimized point. Another advantage 
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of this method is that there is no limitation for the optimizing function 
such as derivability, continuity, etc. This algorithm in its search process 
only requires determining the value of the objective function in different 
points and other additional information like the derivative of the 
objective function are not used. Therefore, it can be used in different 
problems such as linear, non-linear, continuous and discrete. This 
algorithm is easily adopts with different problems. The chromosomes 
evolution procedure in GA is done using different genetic operators 
including mutation, selection and crossover. The selection operator is 
one of the vital operators in selecting parents in order to generate the 
new population. This operator can also affect the convergence of GA. 
The common selection methods in GA are tournament selection, 
Roulette Wheel Selection and rank selection. In this approach, the 
probabilistic sampling is appropriate for placement of reproduction. In 
this method, the selection of parents is done by choosing parents who 
are more competent. The probability of the ith chromosome is computed 
as: 

i
i

f
p

N

ij 1
f






               (7) 

where, fi and N denote to competence of the ith chromosome and 
population number, respectively. In the tournament selection method, 
the chromosomes are randomly nominated among the population so 
that two bests are chosen as parents. Parents generate births and this 
procedure usually endures until the tournament size is reached. The 
tournament size depends on the population size which includes values 
between 2 to the tournament size. In the rank selection method, each 
chromosome has a rank in the population, so that the worst 
competence has value 1 and the best has a value equal to the 
population size. In this method, the best chromosomes have not a 
significant difference with others, therefore the convergence rate 
decreases. The selection method used in this study is the wheel 
selection method. Other operators used in GA include mutation and 
crossover. Crossover operates on two selected chromosomes 
simultaneously and combines chromosomes characteristics to 
generate new generation. Mutation is the individuals’ movements 
between sub-populations of available individuals to replace the best 
individual of a sub-population with the worst individuals of the another 
one. A simple method for achieving the crossover is the random 
selection of the cut point and producing the new generation by 
combining a part of one of the parents to the right (or left) side of the 
cut point. In mutation some parts of the chromosome change in order 
to enhance the performance and the summary process exits from the 
optimized location. In fact, some characteristics are produced which do 
not exist in the parent. In summary, optimization through GA can be 
stated in four stages. First, the initial population is produced randomly. 
Each member of this population is a chromosome which is in the form 
of code and called "string". Each string is divided into sub- strings 
corresponding to the number of design variables. A sub- string is a set 
of bites arranged side by side. Each bit is equivalent to a gene in the 
genetic alphabet. The number of bits of each sub-string is determined 
in such a way that all the information of the design variables can be 
obtained amid the lower and upper bounds in the decoding step. After 
random production of the initial population, design variables’ number in 
each string is evaluated using decoding and values of the objective 
function are determined corresponding to it. Then the objective function 
is evaluated for each population. Then, by defining the competence 
function a competence value is assigned to each string. Then, using the 
multiplication process, it is tried to select the best strings based on the 
degree of competence. Therefore, a very good string finds the 
opportunity to be repeated several times in the selected population. 
Finally, the new population (offspring) whose members quality has 
enhanced in relation to the selected population is created. After 
generating the offspring population, this population is used for the next 
generation. These steps are repeated until the termination criterion is 
fulfilled. The genetic algorithm (GA) was used to optimize the ANFIS 
network, meaning that the number of membership functions and other 
parameters of ANFIS network were optimized by using this optimizer 
tool. 

 
2.3. Optimized design of ANFIS using genetic algorithm 
 

In this stage, hybridization of ANFIS is provided using an 
optimization method called "genetic algorithm" (ANFIS-GA). This 
method is implemented to estimate the DC of triangular weirs. The 
proposed method which its schematic is illustrated in Figure 2 is coded 
in the MATLAB environment. In general, firs a ANFIS model is 
established to model the DC of triangular weirs, thereafter GA is applied 
for optimizing the parameters of the premise and consequent parts of 

the model. Once values of these parameters are obtained, the 
regression model of ANFIS-GA is obtained which is able to estimate the 
DC of the triangular weir. The data used in this study include 5 inputs 
(model 1) or 4 inputs (models 2 to 6) and an output parameter (i.e. DC). 
In order to provide a useful model, a necessary factor is considered in 
analyzing the provided model. Thus, the k-fold validation approach 
(k=5) is applied. In this method, the data are randomly divided into 5 
groups and each time one of the groups are used for testing the model 
and other groups for learning the model. This process is repeated 5 
times, so that all data are used once for testing the model.  Then, 
parameters related to the ANFIS network and GA are determined for 
achieving a prediction with the minimum error. Using a trial and error 
process, the best values obtained for these parameters include the 
number of iterations equal to 1000, the number of the population equal 
to 100, the crossover coefficient equal to 0.9 and the mutation rate 
equal to 0.02. Then Gaussian and the root mean square error (RMSE) 
function are defined as the membership function and the objective 
function, respectively. In the followings, the initial fuzzy inference 
system is created using the grid partitioning (GA) method. Learning of 
the network is started by producing the initial population. The fitness 
level of this function is calculated and examined. If the results are 
reasonable, using the data considered for the test the efficiency of the 
model is validated for the samples which do not play any role in the 
model learning. Given that, the learning process is conducted only once 
so far, certainly there is a long distance from the iteration with the 
maximum number and the offspring population is produced using the 
operators provided in GA (selection, crossover and mutation) and finally 
the fitness function is calculated. This process is repeated until reaching 
to the reasonable answer with specific iterations. The optimized values 
of the Gaussian function using GA are listed in Table 1. 

Table 1. Optimized values of Gaussian function using GA. 

Genetic algorithm (GA) sigma C 

F 
MF 1 0.833 2.628 

MF 2 0.414 0.854 

θ 
MF 1 0.591 0.545 
MF 2 1.097 2.144 

L/w 
MF 1 3.279 11.548 
MF 2 1.858 3.413 

h/w 
MF 1 0.113 0.255 
MF 2 0.270 0.409 

B/L 
MF 1 0.208 0.266 
MF 2 0.287 0.828 

 
2.4. Experimental model 

 
In the current study, the results of the experimental tests obtained 

by Kumar et al. (2011) are employed for predicting the DC of the TPFW. 
The mentioned experimental setup is consisting of a rectangular 
channel with a depth, a length, and a width of 0.41m, 12m, and 0.28m 
respectively. The TPFW is erected at a 11m distance from the 
rectangular channel inlet. In the experimental model constructed by 
Kumar et al. (2011) the parameters θ, w, h, Q and L are the TPFW 
vertex angle, weir crest height, the head above the weir, the flow 
discharge and the TPFW length, respectively. In Table 2, the range of 
the experimental measurements is shown. Also, the schematic of 
Kumar et al. (2011) experimental setup is demonstrated in Fig. 3. 

Table 2. The range of experimental data obtained by Kumar et al. 

(2011). 

Range Parameter 

30-180 θ (Degree) 

0.0924-0.1075 w (m) 

0.008-0.073 h (m) 

0.0012-0.0125 Q (m3s-1) 

0.280-1.082 L(m) 

 
2.5. Discharge coefficient of triangular plan form weirs 
 

Bagheri and Heidarpour (2010) defined the DC as a function of the 
flow discharge (Q), the weir crest height (h) and the weir length (L): 

d 3 2

3 Q
C

2 2gLh
               (8) 

Furthermore, Kumar et al. (2011) measured the values of the TPFW 
vertex angle, the weir height, the head above the weir, the flow 
discharge and the weir length in different hydraulic and geometric 
conditions. Therefore, in the current study, the Froude number (Fr), the 
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TPFW vertex angle (θ), the ratio of the weir length to its height (L/w), 
the ratio of the flow head to the weir height (h/w) and the ratio of the 
channel width to the weir length (B/L) are introduced as the input 
parameters. In the current study, six ANFIS-GA models are introduced 
using the introduced dimensionless variables to evaluate the effects of 
all parameters. The combinations of the defined dimensionless input 

variables are indicated in Fig. 4. In the current study, the Monte Carlo 
simulations (MCS) are utilized to enhance the capabilities of the 
developed hybrid ANFIS-GA. This means that when faced with 
significant uncertainty in the process of making a forecast or estimation, 
rather than just replacing the uncertain variable with a single average 
number, the Monte Carlo Simulation might prove to be a better solution. 

 

Fig. 2. Schematic of hybrid ANFIS-GA method (Azimi et al. 2017a).

 
Fig. 3. Schematic plan of the model presented by Kumar et al. (2011) 

a-view from above b-longitudinal cross-section. 

The k-fold cross validation technique is applied to investigate the 
capability of the defined ANFIS-GA based models at different ranges of 
the target variable. In other words, the k-fold cross validation was used 
to improve the flexibility of the artificial intelligence (AI) models. In this 
approach, all samples are arbitrary allocated into k categories so that 
the samples of each category are different from the others. A category 
form k produced categories is selected as the test samples and the 
other categories are considered as training samples. This process 
repeated k times so that in each iteration the testing samples is differ 
from the other ones. The results obtained from k specified iterations are 
averaged and reported as a reasonable estimation of the target 
variable. The main benefit of the k-fold cross validation is that the 
performance of the model is evaluated for wide range of unseen 
dataset. In current study, the k is chosen equal to 5 (k=5). 

 
3. Results and discussion 
 

In the current study, two absolute and relative indices including the 
root mean square error (RMSE) and the mean absolute percent error 
(MAPE) are employed to evaluate the performance of the developed 
model in DC approximation. 
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where, Cd(Observed)i and Cd(Predicted)i denotes to the observed and estimated 
DC and n is the number of samples. The level of accuracy of the 
numerical models is high if the value of RMSE and MAPE closes to 
zero. In Fig. 5, the scatter plots for different models are shown. In 
current study, to find the best input combination and the effective of 
each dimensionless variables on the DC estimation, six ANFIS-GA 
models are defined. The ANFIS-GA (1) model constructed from all of 
the dimensionless variables including the ratio of the channel width to 
the weir length (B/L), the ratio of the flow head to the weir height (h/w), 
the vertex angle of the TPFW (θ), the Froude number (Fr) and the ratio 
of the weir length to its height (L/w). The RMSE and MAPE for ANFIS-
GA (1) are attained 0.16 and 1.647, respectively. This model has the 
lowest value of the RMSE and MAPE in comparison with other defined 
models. Indeed, the superior performance is obtained by the ANFIS-
GA (1).  Besides, for determining the most effective input parameter, 
five models including ANFIS-GA (2) to ANFIS-GA (6) are introduced 
with four input parameters. In other words, for the mentioned models 
the influence of each of the input parameters is eliminated. For 
example, for the ANFIS-GA (2) model, the influence of the ratio of the 
width of channel to the weir length (B/L) is neglected. This model 
estimated values of the DC in terms of the ratio of the weir length to its 
height, the Froude number, the ratio of the flow head to the weir height 
and the vertex angle of the TPFW. The MAPE and RMSE for this model 
are obtained 1.844 and 0.018, respectively. 

 

Fig. 4. Combinations of input parameters for different models of 
ANFIS-GA. 

Among the input combinations with four input variables (ANFIS-GA 
(2) to ANFIS-GA (6)), the ANFIS-GA (2) has the minimum error. The 
ANFIS-GA (3) model simulates the DC of TPFW with a combination of 
the parameters L/w, θ, B/L and Fr. The difference of this model with 
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ANFIS-GA (1) that consider 5 input variables is the lack use of the h/w. 
Due to the results of the developed hybrid model with the mentioned 
input combinations at model ANFIS-GA (3), the RMSE and MAPE are 
computed as 0.02 and 2.089, respectively. Besides, the value of the 
mentioned indices for ANFIS-GA (4) is as 2.316 and 0.023 for MAPE 
and RMSE, respectively. The difference of the ANFIS-GA (4) with the 
model with all of the dimensionless variables is the lack use of the L/w. 
This model made with the vertex angle of the TPFW, the ratio of the 
channel width to the weir length, ratio of the flow head to the weir height 
and the Froude number as the input variables. For the ANFIS-GA (5), 
the MAPE and RMSE are calculated 1.981 and 0.019, respectively. The 

ANFIS-GA (5) model calculates values of the DC with a combination of 
four input variables including the ratio of the channel width to the weir 
length, the ratio of the flow head to the weir height, the ratio of the weir 
length to its height and the Froude number. In other words, the ANFIS-
GA (5) neglects the effect of the vertex angle of the TPFW (θ) in DC 
estimation. Among the models that neglected one of the dimensionless 
variables provided in the Fig. 4, the ANFIS-GA (6) model has the lowest 
accuracy in predicting the DC of TPFW. For modeling the DC of the 
weir by this input combinations, the influence of the Froude number is 
eliminated, thus the error values increase significantly.  

  
(a) (b) 

  
(c)                         (d) 

  
(e) (h) 

Fig. 5. Scatter plots for models (a) ANFIS-GA 1, (b) ANFIS-GA 2, (c) ANFIS-GA 3, (d) ANFIS-GA 4, (e) ANFIS-GA 5, and (h) ANFIS-GA 6. 

The MAPE and RMSE for the ANFIS-GA (6) model are computed 
as 4.072 and 0.041, respectively. It should be noted that this model 
simulates values of the DC in terms of the ratio of the channel width to 
the weir length(B/L), the vertex angle of the TPFW (θ), the ratio of the 
flow head to the weir height(h/w) and the ratio of the weir length to its 
height(L/w). According to the analysis of the six ANFIS-GA models 
results, the model with a combination of five input variables comprising 
the ratio of the channel width to the weir length (B/L), the Froude 
number (Fr), the ratio of the weir length to its height (L/w), the vertex 
angle of the TPFW (θ) and the ratio of the flow head to the weir height 
(h/w) is introduced as the superior model (ANFIS-GA 1). Also, 
according to the modeling results the flow Froude number is detected 

as the most effective dimensionless input variables in DC estimation. In 
the followings, the result of the ANFIS-GA (1) which is known as the 
superior model is compared with the individual ANFIS model. To this 
end, the comparison of the results of the mentioned model is shown in 
Fig. 6. Due to the individual ANFIS results, the RMSE and MAPE of this 
model are gained 0.038 and 5.052, respectively. According to Fig. 6, 
the ANFIS-GA accuracy is higher than the individual ANFIS in all 
simulation steps. In comparison with the ANFIS-GA superior model, the 
ANFIS method has an overestimate performance during the modeling 
process. Then, as seen, the combination of the ANFIS model with GA 
increases the numerical model accuracy and optimizes the simulation 
procedure as well.
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(a) (b) 

Fig. 6. Comparison of experimental results with results of models (a) ANFIS-GA, (b) ANFIS. 

4. Conclusions 
 

Weirs are applied in different shapes including circular, rectangular, 
triangular and triangular plan form for measuring and adjusting the flow. 
In the current study, a hybrid ANFIS based model was developed for 
simulating the DC of TPFW. The proposed model is a combination for 
the ANFIS and GA so that the GA as a well-known evolutionary 
algorithm in solving nonlinear problems are employed to optimize the 
parameters of the Gaussian MF. For recognizing the optimized 
combination of the input variables, six different hybrid input 
combinations were introduced. The results of the modeling showed that 
the best model estimates the DC in terms of the vertex angle of the weir, 
the ratio of the flow head to the weir height, the flow Froude number, 
the ratio of the weir length to its height, and the ratio of the channel 
width to the weir length. The developed hybrid model, ANFIS-GA (1), 
has the reasonable accuracy (RMSE = 0.016; MAPE = 1.647). The 
results of the performed sensitivity analysis indicate that the most 
effective parameter in the DC is the flow Froude number. Furthermore, 
the results of the hybrid superior model were compared with the 
individual ANFIS. This model predicted the DC in an overestimate 
manner, while the hybrid model simulated the DC with higher accuracy. 
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