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 Hazelnut shell was used as a green adsorbent and environment-friendly for 
magnesium ions (Mg2+) adsorption from hard water solution in batch system. The 
characterization of the biosorbent was entirely evaluated using SEM, XRD and FT-
IR analyses. Design of experiments (DOE) decreased the number of non-significant 
experiments, which resulted in reducing the time and cost of studies. Response 
surface methodology (RSM) was applied to dynamic assessment of the adsorption 
process. The effects of variables (pH, adsorbent dosage, Mg2+ concentration, time) 
and their interactions were investigated by central composite face design (CCFD). 
In addition, the numerical optimization was also analyzed. The results 
demonstrated that maximum efficiency, 56.21 %, and adsorbent capacity, 5.729 
mg/g, occurred at initial concentration of 200 mg/L, adsorbent dosage of 1 g and 
pH 10 in duration of 59.816 min which were in good agreement with experimental 
results. In order to validate of the dynamic model, artificial neural network (ANN) 
was employed. Although RSM had a superior capability in developing of the model 
in comparison with ANN, it was acceptable to forecast the magnesium ions removal 
by both RSM and ANN approaches. Finally, the studies of the adsorption isotherms, 
kinetic models, reusability tests of the adsorbent and comparison with walnut shell 
were also done. 

©2020 Razi University-Al rights reserved. 
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1. Introduction 

 
Hardness of water has caused a serious problem in water 

resources and many industries, especially. Hard water heating can form 
the solid deposits of calcium carbonate. The sediments act as a 

resistance and have a negative effect on heat transfer. Moreover, it 

makes pressure drop and sometimes blockage of pipes. Therefore, it 
reduces equipment life and results in higher cost and lower productivity 

(Inspectorate. 1999; Tchobanoglous and Burton. 2003; Tyusenkov and 
Cherepashkin. 2014). The hardness is mainly determined by two 
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calcium and magnesium metals. In general, the categories of hard 

water are: 0 to 60 ppm as calcium carbonate is soft water, 61 to 120 
ppm, moderate, 121 to 180 ppm, hard and more than 180 ppm is very 

hard (Tchobanoglous and Burton. 2003). Groundwater hardness can 
be created due to the presence of minerals in soil and rock. Although 

minerals are helpful for health, they must be controlled at a certain limit 
to prevent the diseases (Tchobanoglous and Burton. 2003). Among the 

several methods such as ion exchange, adsorption, electrochemical, 
chemical precipitation, membrane and etc., adsorption process is able 

in the uptake of the metals. Because it is safe, cost-effective and high 

quality (Eccles. 1999; Tchobanoglous and Burton. 2003).  Metal ions 
adsorption has been studied by many researchers. Recently, the effect 

of nanobubbles on heavy metal ions adsorption was investigated. In 
that work, Lead ions were adsorbed through activated carbon which 

was made by pyrolysis potato peels. Although nanobubbles did not 
increase the adsorption capacity, they accelerated it by 366 % (Kyzas 

et al. 2019). In another research, biogenic iron compounds were used 
to remove copper, zinc, arsenate and chromate from aqueous 

solutions. Arsenic adsorption was in a higher level compared with the 

other metals (Castro et al. 2018). The hazelnut shell was employed for 
Zn (II) removal from leachate. In that work, Zn (II) concentration 

decreased by almost 12 % (Turan et al. 2011). In another study, to 
remove of Cd2+, Zn2+ and Cr3+ from aqueous solution, hazelnut shell 

was also used. Cr3+ adsorption was more than both Cd2+, Zn2+ in mixed 
solutions (Cimino et al. 2000). In recent years, black cumin and biochar 

were employed as a bioadsorbent to remove Pb (II) and Cd (II) (Bingol 
et al. 2012; Ni et al. 2019). Furthermore, activated carbon as a 

conventional sorbent was applied in many works (Aghav et al. 2011; 

Monser and Adhoum. 2002; Xu et al. 2008). Although different 
adsorbents have been used on the removal of heavy metals such as Cr 

(Babel and Kurniawan. 2004; Low et al. 1995; Ogata et al. 2018), As 
(Castro et al. 2018; Ogata et al. 2018), Zn (Esalah et al. 2000; Low et 

al. 1995; Monser and Adhoum. 2002; Turan et al. 2011; Wu et al. 2019), 
Cd (Al-Senani and Al-Fawzan. 2018; Esalah et al. 2000; Ngah and 

Hanafiah. 2008; Pedersen. 2003; Rostami and Joodaki. 2002; Wu et al. 
2019; Zhang et al. 2010), Co (Ngah and Hanafiah. 2008), Pb (Ngah and 

Hanafiah. 2008; Pavan et al. 2008; Zhang et al. 2010), Cu (Cardoso et 

al. 2004; Hong et al. 2019; Marshal and Johns. 1996; Pamukoglu and 
Kargi. 2006), light metals has rarely been studied. In addition, 

magnesium removal by hazelnut shell from hard water solutions has 
not been investigated. 

Developing the mathematical and statistical methods for analyzing 
data of the adsorption process is necessary. Design and analysis of 

experiments determine the number of significant experiments, model 
and optimization of process conditions. It is useful to decrease the 

number of experiments, cost and time of experiments (Montgomery. 

2008). In the past, univariate mathematical method was mostly applied 
to analyze. It could not interpret the effects of independent variables 

and their interactions. Nowadays, multivariate mathematical and 
statistical methods make an excellent investigation of problems. 

Recently, response surface methodology (RSM) has attracted more 
attention as a powerful tool in analyzing the behavior of independent 

variables and their interactions. The RSM depicts the path of 
experiments, mathematics and statistics simultaneously (Montgomery. 

2008). The performance of the biosorption process is mainly complex 
and nonlinear. Therefore, it can be reasonable to employ RSM by 

central composite face design (CCFD) and Box-Behnken design (BBD) 

methods. In CCFD and BBD, numerical and graphical optimizations 
specify the optimal conditions and best responses (Mohammadidoust 

et al. 2016a). In recent decay, RSM has been used as a capable 
methodology in the adsorption processes (Hasan et al. 2009; Preetha 

and Viruthagiri. 2007; Singh et al. 2010). Moreover artificial intelligence 
(AI) has been applied in the modeling and optimization of environmental 

processes, wastewater and contaminated solutions treatment, 
especially (Prakash et al. 2008; Saber et al. 2009). Artificial neural 

networks (ANNs) as one of the extremely useful of AI, is viable and 

promising approach in developing nonlinear behavior of complex 
processes. When the mathematical model fails to define of problem 

which contains different variables, numerical methods may be well 
estimation the corresponding model (Bingol et al. 2012; Turan et al. 

2011). ANN attempts to solve problems by inspiring the biological 
structures such as the brain and nerves systems. It consists of three 

layers including input, hidden and output which neurons are linked to 
others of next layer. Finally, they produce an interconnected group 

through weights and biases (Mohammadidoust et al. 2015; 

Mohammadidoust et al. 2016b). Therefore, using the new methods, 
numerical and statistical, can play a crucial role in optimizing and 

modeling complicated processes. In recent years, applying both ANN 

and RSM methods has been very interesting to authors (Desai et al. 
2008; Geyikci et al. 2012;  Kasiri et al. 2008; Khayet et al. 2011; Ranjan 

et al. 2011; Shihani et al. 2006). 
The main purpose of this work is assessment of the magnesium ions 

reduction of hard water using the hazelnut shell as low cost, easy 
available, environment-friendly and safe for human, in order to 

decrease sediments of equipment. To achieve this aim, the RSM was 
applied to select of experiments, optimize the factors and responses of 

the process, based on CCFD. Afterwards, a three-layer ANN model by 

feed-forward back propagation type relying on Levenberg-Marquardt 
algorithm was also trained. In addition, the attained results of the RSM 

and ANN models were compared and optimal conditions due to the 
numerical methods were determined. Finally, adsorption isotherms, 

kinetic models, reusability tests of the adsorbent and comparison with 
walnut shell were also evaluated. 

 
2. Materials and methods 

2.1. Materials 

 
 In order to the preparation of the stock solutions, MgCl2.6H2O 

(Mw=203.295 g/mol) was used. The dilution process was implemented 
by deionized water to the desired initial concentrations. complexometric 

titration was performed to analyze of the magnesium ions amount with 
EDTA, E.C.B.T, calcium carbonate, hydrogen chloride (37 %), 

ammonia (25 %), ammonium chloride, murexide and sodium chloride. 
Al the chemicals were supplied from Merck, Inc. 

 

2.2. The biosorbent preparation 
 

Green hazelnuts were purchased from a local market in 
Kermanshah, Iran. First, hazelnut shells were separated and washed 

with deionized water several times to remove dust and air pollutants. 
To dry the hazelnut shells, they were kept in an oven at 45 °C for 48 h. 

The shells further crushed by simple and planetary bal mills. Then, the 
particles were sieved with a 52 mesh size screen (300 µm, openings). 

Table 1 shows the chemical characterizations of the hazelnut shells 
which used in this research. 

Table 1. The chemical characterizations of the hazelnut shells. 

Component Value, % 

Oxygen 44.18 
Carbon 48.93 

Hydrogen 5.38 

Sulfur 0.50 
Ash 1.01 

 

2.3. Adsorption procedure and analyses 
 

The experiments of Mg+2 removal were conducted using the 
hazelnut shells, in batch system with a volume of 100 ml. A certain 

weight (0.4-1 g) of the sorbent was introduced into beaker which 
contains 50 ml of Mg+2 solution (100-200 mg//L). The pH adjustments 

were obtained with a pH meter (Metrohm 827, Swiss) through 0.1 M 
HCl or 0.1 M NaOH. The top of the beaker was closed and placed on 

an analogue orbital shaker (GFL 3005, Germany) at rotation speed of 

160 rpm and constant temperature of 25 ºC. After the known time 
intervals (20, 40 and 60 min), the sample was filtered and centrifuged. 

Then, the residual concentration of Mg+2 solution was analyzed by 
complexometric titration method. Al the experiments were carefully 

performed in duplicate, to attain an exact value due to average of the 
values. 

The micro-structural study of the biosorbent was carried out using 
scanning electron microscopy (SEM, KYKY EM-3200, China). 

Moreover, X-Ray fluorescence spectrophotometer (XRF, PW 1480, 

Philips, Netherlands) was employed to determine the adsorbent 
compositions. To evaluate the biosorbent capability in the adsorption 

process, FT-IR (Thermo Nicolet, US) and XRD (STOE-STADI P, 
Germany) tests were also investigated. The efficiency of Mg2+ removal 

(R) and biosorbent capacity (q, mg/g) as the responses of the RSM 
were considered, which were calculated as follows: 

R (%) = (
C°−C

C°
) ×100                                                                                                  (1) 

q = (
C°−C

m
) × V                                                                                                              (2) 
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where, C0 and C are the initial and final concentrations of Mg2+ in 

solution (mg/l) respectively, m is the hazelnut shell dosage (g) and V is 
total solution volume (L).  

 
3. Results and discussion 

3.1. Biosorbent studies 
 

The hazelnut shells consist of some elements which have been 
reported in Table 1. As seen in XRF analysis, carbon (48.93), oxygen 

(44.18) and hydrogen (5.38) have significant contents, respectively. 

Two pairs of free electrons in oxygen atom can be effective in the 
adsorption process between the surface of the sorbent and magnesium 

atom. In addition, hydrogen bonding with pH changes may constitute a 
force and attempt to adsorb magnesium ions species (Hasan et al., 

2009). The micro-structures of the biosorbent are illustrated in Fig.1. 
Scanning electron microscopy (SEM) showed the surface structure at 

magnifications of 30, 50, 100 µm. It can be clarified that the particles 
were on a micro scale (6.38, 14.49, 16.76, 17.08 and 22.54 µm) as 

shown in Fig. 1c. Moreover, porous and irregular morphology of 

adsorbent led to improve the uptake of magnesium ions into different 
active sites. In the image on the 30 µm scale (Fig. 1 a), it indicates the 

adsorbent particles uniformly, but as the scale rises (50, 100 µm) as 
indicated in Fig. 1c and d, the aggregated components are more 
evident. 

 

 

Fig. 1. Scanning electron microscopy (SEM) of hazelnut shells, (a) 30 

µm, (b) 100 µm (× 470), (c) 100 µm (× 530), (d) 50 µm. 
 

FT-IR spectra depicted the sorbent constituents in the region of 400-

4000 cm-1, before and after magnesium ions adsorption. As shown in 
Fig. 2, the peak in 1060 cm-1 related to the C-O stretching vibration. The 

C=C bond vibration frequency can be seen in 1618 cm-1. Furthermore, 
the 2925 cm-1 band was assigned to the C-H stretching vibration in 

aliphatic. The peaks of 3416 cm-1 and 3424 cm-1 could verify the 
stretching vibration of –OH group. Thereby, hydrogen bonding was 

confirmed in the hazelnut shells. The influence of the magnesium ions 
on the –OH group was made that the –OH transferred to lower 

frequency (3424 to 3416 cm-1) and then the bandwidth decreased. It 

was resulted in increasing the percentage of light passing (30% to 
60%). Therefore, the 3416-3424 cm-1 bands may be attributed to the 

magnesium ions adsorption on the hazelnut shells. Fig. 3 demonstrated 
XRD pattern of the sorbent loaded with the magnesium ions. It can be 

realized broad peaks with high intensities. Maximum peak (011) was 
found at a 2θ of 38 degrees. According to the pattern, Mg(OH)2 trigonal 

crystals was approved due to the JCPDS card no. 96-900-6331. 
Spreading peaks can also be a reason which the particles were small 

(microscale). 

 
3.2. Design of experiments (DOE) 

3.2.1. Response surface methodology (RSM) 
 

In this work, Design Expert software (version 10.0.7) was 
employed. Factorial design and response surface methodology are two 

basic approaches in the design of experiments. The RSM assessments 
the effects of the independent variables; main, quadratic and their 

interactions in the three-dimensional space (surface) which the 

interaction of variables are precisely studied on response surface, 
especially (Montgomery. 2008). Box-Behnken design (BBD) and 

central composite design (CCD) are main branches in the RSM. In this 
work, the CCD was applied to investigate the effects of variables in 

adsorption of magnesium ions. Reason of this choice was low error of 
the CCD in analyzing of data than the BBD. Furthermore, trying to find 

optimum factors and responses were accomplished through the CCD. 
The selected variables for this research were the initial magnesium ions 

concentration, pH, contact time and biosorbent dosage. The variables 

were the most significant factors with respect to experimental conditions 
considered in the literature for many adsorption processes (Kyzas et al. 

2019; Ogata et al. 2018). Biosorbent capacity (q) and Adsorption 
efficiency (R, %) were selected as the responses of experiments. The 

factors were coded based on three levels as the low (-1), medium (0) 
and high (+1). Their rang, coded levels and experimental runs are listed 

in Table 2 a and b. In addition, experimental and predicted results are 
tabulated in Table 3. Al of the experiments were carried out in triple and 

final value was their average.  Table 2 presents twenty-one runs and 

five center points which were randomly specified as the experimental 
design based on the CCD method. 

 
 Fig. 2. FT-IR spectra before and after Mg2+ adsorption. 
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Fig. 3. XRD pattern of hazelnut shells loaded with Mg2+. 

Table 2a. The Variables with coded levels and the experiments based 

on the CCD. 

Variables 
Factor 
code 

Levels 

-1 0 +1 

Initial 

concentration, 
mg/L 

A 100 150 200 

pH B 4 7 10 
Contact time, 

min 
C 20 40 60 

Biosorbent 
dosage, g 

D 0.4 0.7 1 

 

Table 2b. Experimental design. 

Run no. A B C D 

1 0 0 0 0 
2 0 0 +1 0 

3 +1 +1 -1 -1 
4 0 +1 0 0 

5 0 0 0 0 
6 -1 -1 +1 -1 

7 0 0 0 0 
8 +1 -1 +1 +1 

9 +1 0 0 0 
10 0 0 0 0 

11 -1 -1 -1 -1 

12 0 -1 0 0 
13 -1 +1 +1 +1 

14 0 0 0 0 
15 0 0 0 -1 

16 0 0 0 +1 
17 0 0 -1 0 

18 -1 0 0 0 
19 -1 +1 -1 +1 

20 +1 +1 +1 -1 

21 +1 -1 -1 +1 

 
3.2.2. Response surface modeling and analysis of variance (ANOVA) 

 
To prevent the repeated experiments and reducing the cost and time 

parameters, it is important to develop a good model for prediction of the 
responses. The RSM suggested a quadratic model due to the variables 

of the experiments. Because of the excess calculations and errors in 
estimating the outputs, the models were modified by removing non-

significant parameters which explained in subsequent section. Finally, 
polynomial regression equations were presented as the best model in 
terms of coded factors as follows: 

q=3.42+0.56A+0.61B+0.35C-0.49D+0.54AB+0.29AD-
0.16CD+0.15A2+0.47D2 

(3) 

R=32.07-6.5A+5.67B+2.92C+11D+3.31AB-

0.69AC+2.36AD+1.69BD+2.79A2+1.62D2 
(4) 

As reported in Table 3, predicted outputs (q, R) with respect to  suggested 

models, have great correlation with the experimental data. These models 
cover the main effects, their interactions and quadratic effects on Mg+2 

adsorption process according to capacity and efficiency. Interactions 

between the variables have crucial influences on the adsorption process 
which are investigated two variables, simultaneously. 

  
Table 3. Experimental and predicted results for Mg+2 adsorption, 

CCD. 

Adsorption efficiency 

(R), % 

Amount of adsorption (q), 

mg/g 

Predicted Experimental Predicted Experimental Run 

32.07 30.66 3.42 3.285 1 
34.99 35.33 3.77 3.78 2 

21.68 21.5 5.44 5.375 3 

37.74 38 4.03 4.07 4 
32.07 32 3.42 3.428 5 

37.28 37 4.7 4.625 6 
32.07 32 3.42 3.428 7 

34.9 34.5 3.44 3.45 8 

28.36 29 4.13 4.14 9 
32.07 32.66 3.42 3.5 10 

30.06 30 3.68 3.75 11 
26.4 26.66 2.81 2.857 12 

59.28 59 2.96 2.95 13 
32.07 31.33 3.42 3.357 14 

22.69 23.33 4.38 4.375 15 

44.69 45.33 3.4 3.4 16 
29.15 28.66 3.07 3.071 17 

41.36 42 3.01 3 18 

52.06 52 2.58 2.6 19 
26.14 26 6.46 6.5 20 

30.44 30.5 3.06 3.05 21 

In the past, univariate way was a conventional method in analyzing of 

variables, but now, mathematical and statistical methods by aiding 

analysis of variance play a prominent role in the detailed study of 
interactions. Concerning to Table 4, it was obviously understood that 

statistical indices are in appropriate states. For instance, the 
determination coefficient (R2) of 0.9971 for the capacity (q) and 0.9968 

for the efficiency implied that the models processed the responses in a 
level of high accuracy so that only 0.29 % and 0.32 % of total variations 

for q and R could not be interpreted by these models, respectively. 
Therefore, they will be trusted in order to forecast the Mg+2 adsorption 

from hard water as general models. Moreover, analysis of variance 

(ANOVA) was applied to test of the models. Degree of significance for 
main, quadratic and interaction effects were determined according to 

probability value (p-value). The variables with p-value less than 0.01 are 
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highly significant, between 0.01 and 0.05, significant and higher than 0.05 

are reported as non-significant effect in statistical approaches 
(Mohammadidoust et al. 2016a; Montgomery., 2008). Tables 5 and 6 

indicate that the models were significant for the capacity and efficiency of 
the adsorption process. In other words, these models are exact and 

credible at 95% confidence level due to data processing and rational 
variations regarding the variables which used in this study. Furthermore, 

lack of fit index had non-significant degree (greater than 0.05) for both 
models. It verified the validity of the models. As illustrated in the Tables 5 

and 6, the main variables (linear) are in a highly significant degree for q 

and R responses. In the adsorbent capacity model, the interaction effect 
between initial concentration of magnesium ions and pH (AB), also 

contact time and biosorbent dosage (CD), have the highest significance 
among the other interactions. In addition, the second-order variable of the 

biosorbent dosage (D2), noticed as the most important effect on Mg+2 
adsorption than other second-order effects. The p-value of other variables 

such as AC, BC, BD, B2 and C2 reported as 0.1838, 0.3553, 0.8137, 
0.4833 and 0.9139. Therefore, these variables were not recognized as 

significant effects and removed from the related model. In the adsorption 

efficiency model, the interactions between initial concentration with pH 
(AB) and biosorbent dosage (AD) show highly significant degree while AC 

and BD interactions are found as significant effect on the efficiency of the 
adsorption. In this model, second-order variable of the initial 

concentration of Mg+2 (A2) had the most significant effect on the efficiency. 
The variables of BC, CD, B2 and C2 with p-values of 0.8458, 0.8359, 

0.8012 and 0.4136 were non-significant in the adsorption efficiency. 
Finally, the summarized models have  
been expressed in the Eqs. 3 and 4. 

Table 4. Statistical indices of the predicted q and R, %. 

Statistic parameters q R, % 

Standard deviation 0.067 0.73 

R-Squared 0.9971 0.9968 
Adj R-Squared 0.9946 0.9935 

Pred R-Squared 0.9864 0.9700 

Adeq Precision 83.548 70.657 
Mean 3.71 34.16 

C.V.%1 1.80 2.15 
PRESS2 0.23 50.05 

1 Coefficient of variation 
2 Prediction residual sum of square 

  

 
3.2.3. The effects of the variables on the adsorption of Mg+2  

- Univariate effect 

 

In this study, the operating parameters of the initial concentration of 

magnesium ions (A), pH (B), contact time (C) and biosorbent dosage (D) 
were investigated on the adsorption of magnesium ions at constant 

temperature of 25 °C. The effect of one-variable is evaluated at constant 
amount of other variables (medium level). As shown in Fig. 4 a and b, 

with increasing the initial concentration, the adsorbent capacity (q) 
increased while the adsorption efficiency (R, %) decreased. It is evident 

that by increasing the initial concentration, cations were attracted on the 

surface of biosorbent with negative charge. Nonetheless, negative effect 

on the R can be attributed the saturation of active sites of biosorbent on 
above places and declining the diffusion of the metal ions into the pores 

(Banat et al. 2000). In addition, a similar result was observed in study of 
Ferreira et al. (2011).  

It can be significant that the pH parameter effects on ionization 
degree and leads to the variation of the reaction kinetic and equilibrium 

specifications of the processes (Aksu and Akpinar. 2001; Kumar et al. 
2009). The pH is one of the important variables affecting on the 

adsorption processes. Its effect was determined according to the type of 

the adsorbent and functional groups onto the sorbent. Figs. 4 a and b 
reveal that increasing pH has a positive effect on the q and R responses. 

It may be related to competition between hydrogen and magnesium ions 
in ranges of the pH. Meanwhile, at higher pH, the magnesium ions 

overcome the hydrogen ions and adsorbed on the surface of hazelnut 
shells. Whereas, in acidic solution, it is clear that H+ acts as powerful ion 

and well adsorbed on the biosorbent (Bingol et al. 2012). The influence 
of the contact time in interval of 20-60 min was studied. Enhancement of 

time resulted in increase the q and R which is confirmed in Fig. 4 a and 

b. In fact, more time provides an opportunity to contact between the 
adsorbent and adsorbate. In this work, maximum adsorption occurred in 

time of 60 min and did not any change after this time. Therefore, 
equilibrium time was determined in duration of 1 h. Finally, the biosorbent 

dosage had different effects on the capacity and efficiency of the 
adsorption process. It can be found in Fig. 4 a and b) that the biosorbent 

addition declined the adsorbed amount of Mg+2 in the unit mass of 
biosorbent. It can be interpreted by reduced concentration gradient 

between magnesium concentration in the solution and biosorbent surface 

(Bingol et al. 2012; Sud et al. 2008). Moreover, the efficiency increased 
by increasing the hazelnut shells (Fig. 4b). In other words, more amount 

of metal ions placed on the biosorbent surface and removed from the 
solution at constant content of magnesium ions. 

 
- Interaction effect 

 
To further investigate, the interaction of variables affecting on the 

adsorption process was studied. The interactions of two variables were 

considered at constant amount of two other variables (medium level). Fig. 
5a depicts the interaction between initial concentration of the solution and 

pH. The simultaneous effect of the variables on the R is observed in the 
Fig. Medium contents of contact time and biosorbent dosage were 40 min 

and 0.7 g with taken into account the experimental design. As discussed 
in previous section, the negative effect of adding the initial concentration 

is clear on the efficiency of the process. In this figure, increasing pH 
repaired the negative effect of initial concentration and promoted the R, 

so that pH acted as a dominant effect. It should be noted that red curve 

indicates the high level of pH. Interaction between the initial concentration 
and biosorbent dosage on the R is shown in Fig. 5b. Medium levels of pH 

and contact time considered as 7 and 40 min, respectively. Enhancement 
of biosorbent increased the efficiency of the adsorption which was also 

mentioned earlier. As an important result, it can be understood that 
increasing amount of biosorbent not only increased the R but reduced the 
negative effect of the initial concentration on the uptake of Mg+2.   

  
(a) (b) 

Fig. 4. The effect of each variable on the Mg+2 adsorption, a: biosorbent capacity (q), b: adsorption efficiency (R, %). 
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Table 5. Analysis of variance and importance of variables in the quadratic regression model of the q response. 

Source 
Sum of 
squares 

df1 Mean square F value p-value, Prob > F 
Degree of 

importance 

Model 16.66 9 1.85 413.12 < 0.0001 High significant 

A-Co 3.12 1 3.12 697.18 < 0.0001 High significant 

B-pH 0.74 1 0.74 164.14 < 0.0001 High significant 

C-Time 1.20 1 1.20 266.95 < 0.0001 High significant 

D-dosage 0.48 1 0.48 106.05 < 0.0001 High significant 

AB 0.46 1 0.46 103.13 < 0.0001 High significant 

AC - - - - - Non-significant 

AD 0.13 1 0.13 29.56 0.0002 High significant 

BC - - - - - Non-significant 

BD - - - - - Non-significant 

CD 0.20 1 0.20 43.58 < 0.0001 High significant 

A2 0.073 1 0.073 16.30 0.0020 High significant 

B2 - - - - - Non-significant 
C2 - - - - - Non-significant 

D2 0.71 1 0.71 157.96 < 0.0001 High significant 

Residual 0.049 11 4.482E-003    

Lack of Fit 0.023 7 3.237E-003 0.49 0.8097 Non- significant 

Pure Error 0.027 4 6.660E-003    

Cor Total 16.71 20     

1Degree of freedom 
 

Table 6. Analysis of variance and importance of variables in the quadratic regression model of the R response. 

Source Sum of squares df Mean square F value 
p-value Prob > 

F 
Degree of importance 

Model 1660.24 10 166.02 307.36 < 0.0001 High significant 

A-Co 84.50 1 84.50 156.43 < 0.0001 High significant 
B-pH 64.30 1 64.30 119.03 < 0.0001 High significant 

C-Time 85.09 1 85.09 157.52 < 0.0001 High significant 
D-dosage 242.00 1 242.00 448.01 < 0.0001 High significant 

AB 17.56 1 17.56 32.50 0.0002 High significant 

AC 3.78 1 3.78 7.00 0.0245 Significant 

AD 8.89 1 8.89 16.46 0.0023 High significant 

BC - - - - - Non- significant 

BD 4.56 1 4.56 8.43 0.0157 Significant 

CD - - - - - Non- significant 

A2 25.18 1 25.18 46.61 < 0.0001 High significant 
B2 - - - - - Non- significant 

C2 - - - - - Non- significant 
D2 8.48 1 8.48 15.71 0.0027 High significant 

Residual 5.40 10 0.54    

Lack of fit 3.09 6 0.51 0.89 0.5737 Non- significant 

Pure error 2.32 4 0.58    

Cor Total 1665.64 20     

 
Fig. 5c illustrates the interaction between the biosorbent dosage and 

pH at medium levels of initial concentration (150 mg/L) and contact time 
(40 min). The effect of each variable has been previously explained. Both 

the pH and biosorbent dosage had positive effect on the adsorption 

efficiency. Although increasing pH increased the R at all of levels of 
biosorbent, it was found that their interaction was less effective on the 

response R. Moreover, the interaction of variables on the capacity of 
biosorbent was also investigated. Fig. 5d shows interaction effect of initial 

concentration and pH on the response q. In this Fig., it is obviously 
observed that initial concentration works poorly along with the pH 

parameter, so that the intensity of uptake is evident by increasing the pH. 
In addition, simultaneous effect of the initial concentration and the 

biosorbent dosage on the q is shown in Fig. 5e. It can be seen that 

biosorbent dosage has a significant effect on the q. Adding the biosorbent 
reduced the amount of uptake in unit mass of biosorbent as mentioned 

earlier but its negative effect was compensated at high level of initial 
concentration of Mg+2. Finally, interaction between contact time and 

biosorbent dosage was evaluated. The contact time played an important 

role in improving the biosorbent capacity which was previously 

introduced. In Fig. 5f, increasing the amount of biosorbent always has a 
reducing effect on the q in all of states. Concerning to the figure, the 

adsorbed magnesium reduced by increasing the adsorbent as the 

increase of time had a low effect against the biosorbent. It should be 
noted, to summary, important interactions were presented and other 

interactions were either non-significant or similar effect on the responses. 
 

3.2.4. Numerical optimization of the adsorption process 
 

In general, Process optimization refers to improve the performance of 
a system or production of a product in order to derive the most benefit. 

Design expert presents two methods including graphical and numerical 

approaches. The numerical optimization is one of the methods that used 
as a powerful tool in finding of optimum parameters with high accuracy 

and clear by aiding desirability index. In this approach, a range was 
considered for each variable and response. The optimization process was 

carried out by using the objective function. Desirability function is one of 
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the most widely used techniques in multi-response optimization which 

was developed by Harrington (1965). Total desirability was introduced 
due to geometric mean of desirability of each response according to 

Appendix A. The desirability value is between zero and one, indicating 
that optimum point is close to one (ideal value). The range of the variables 

is listed in Table 7. The aims of the optimization were to maximize the q 
and R. Design expert software reported some of experiments in the 

optimum condition. In Table 8, the most desirable point under the 

specified conditions is the first experiment due to the removal efficiency 

of 56.21 %, the capacity of 5.729 mg/g and total desirability of 0.862. To 
test the optimum conditions, five additional experiments were performed 

which had not selected in the design of experiments.  These experiments 
are randomly tabulated in Table 9. As resulted in Table 10, mean error of 

2.44 % and 1.68 % for the q and R, respectively, verify the high estimation 
power of the RSM. 

  

  
(a) (b) 

  
             (c)               (d) 

  
(e) (f) 

Fig. 5. Interactions between variables, a: pH and Co on the R, b: weight of biosorbent and Co on the R, c: weight of 

biosorbent and pH on the R, d: pH and Co on the q, e: weight of biosorbent and Co on the q, f: weight of biosorbent and time 
on q. 

 

3.3. ANN modeling and comparison with the RSM 
 

A precise prediction of the testing process can have a constructive 
role in reducing time and cost. The powerful tool of the artificial 

intelligence estimates the complex processes which have not been 
introduced by specified mathematical models. Artificial neural networks 

(ANNs) as one of the subsets of artificial intelligence were employed in 
this work. The MATLAB software (R2014a) used to model capacity and 

efficiency of the adsorption process. Initial concentration of Mg+2, pH, 

contact time and biosorbent dosage were selected as inputs of network 
training. The q and R considered as outputs. The ranges of data used in 

the network training according to the Tables 2 and 3. The ANN choices 
the number of inputs and outputs as neurons of the input and output 

layers, respectively, while trial-and-error method determines number of 
neurons in hidden layer. Several algorithms consist of; Levenberg-

Marquart (LM), Bayesian-Regulation (BR), Scaled conjugate Gradient 
(SCG) and etc., have been introduced in the ANN. Fig. 6 demonstrates 

the optimum algorithm and the neurons of the hidden layer. As shown in 
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the Fig., it can be found that the BR algorithm develops the network in 

high accuracy level against the LM and SCG algorithms. Abso lute 
average deviation (AAD) index with a minimum value close to zero, 

determined the BR algorithm by 6 neurons as the best. Although the 
response time of the LM algorithm was shorter than the BR, it had less 

precision in the network training. Finally, the BR algorithm, feed-forward 
back propagation type and optimum architecture (4-6-2) were attained by 

the optimization of the network.  The ANN produces the proper weights 
and biases and uses in an equation which is presented in Appendix A. 

“tansig” and “purelin” used as transfer functions of the hidden and output 
layers, respectively. 

Table 7. The range of the variables in the optimization process. 

Criteria Target 
Lower 

limit 

Upper 

limit 

Initial Concentration(Co), mg/L Is in range 100 200 

pH Is in range 4 10 

Time, min Is in range 20 60 
Weight, g Is in range 0.4 1 

Amount of adsorption(q), mg/g Maximize 2.6 6.5 
Adsorption efficiency(R), % Maximize 21.5 59 

The results showed that the q and R outputs were well forecasted by 

the ANN model. Fig. 7a and b illustrates a comparison between the ANN 
and RSM approaches. In Fig. 7a, it can be seen that the RSM predicts 

the q data better than the ANN. In addition, as depicted in the Fig. 7b, 
both the ANN and RSM have good agreement with the experimental data 
in predicting the R output.  

 Table 8. The optimum experiments in the adsorption process. 

Number Co PH Time Weight q R Desirability 

1 200.000 10.000 59.816 1.000 5.729 56.210 0.862 

2 199.835 9.993 60.000 1.000 5.722 56.193 0.861 

3 200.000 9.994 59.588 1.000 5.724 56.165 0.861 

4 200.000 10.000 58.886 1.000 5.720 56.107 0.859 

5 199.183 9.997 60.000 1.000 5.702 56.154 0.857 

6 200.000 10.000 60.000 0.995 5.720 55.910 0.857 

7 200.000 10.000 57.971 1.000 5.711 56.005 0.857 

8 200.000 9.934 59.716 1.000 5.702 55.963 0.855 

9 200.000 10.000 57.348 1.000 5.705 55.933 0.855 

10 200.000 10.000 56.788 1.000 5.700 55.872 0.854 

11 200.000 10.000 60.000 0.990 5.711 55.597 0.852 

12 199.297 10.000 60.000 0.992 5.692 55.710 0.851 

13 200.000 10.000 60.000 0.986 5.705 55.405 0.848 

14 198.368 10.000 58.110 1.000 5.658 55.888 0.848 

15 200.000 10.000 54.247 1.000 5.676 55.590 0.847 

 

Fig. 6. The optimization of algorithm and neurons. 

To more evaluation, the numerical results are reported in terms of 

indicators of the absolute average deviation (AAD), the average relative 

deviation (ARD) and total correlation coefficient (R2). Regarding to Table 
11, although both the ANN and RSM are in appropriate level of accuracy, 

the RSM is more exact in estimating the q. Moreover, the predicted R 
response is in a superior agreement with experimental through the ANN 
model. 

 

 

Table 9. Five additional experiments to test the optimum conditions. 

Number Co PH Time Weight q R Desirability 

1 200.000 10.000 59.816 1.000 5.729 56.210 0.862 

2 200.000 10.000 60.000 0.871 5.568 48.656 0.742 

3 200.000 10.000 20.006 0.901 5.108 45.912 0.647 

4 150.151 10.000 58.770 1.000 4.188 54.775 0.601 

5 100.005 10.000 59.975 0.400 4.824 38.600 0.510 

 
             (a)  

 
(b) 

Fig. 7. The performance of the developed models, a: q, b: R %. 

In summary, because of wide applications of the ANN and RSM models, 

they can cover the pseudo -first or second order models (e.g. kinetic 
models) and isotherm models (e.g. Langmuir, Freundlich) in high 

confidence level. For instance, the ANN acts as a comprehensive 

information box so that the capacity and efficiency of the adsorption 
process are extracted by entering the input variables. 

 
3.4. Comparing the adsorbent capacity of the hazelnut shell w ith 

other adsorbents 
 

In addition to the hazelnut shell, the adsorption studies of Mg ions on 
other adsorbents such as walnut shell have been performed and a 

comparison is presented in Fig. 8. The experiments were conducted at 

pH 7, adsorbent dosage of 0.4 g, initial concentration of 100 mg/L and 
time in the range of 20-60 min. As depicted in the figure, it can be 

understood that the hazelnut shell has a better performance than walnut 
shell. Although walnut shell acted as a loser biosorbent, it was found that 

both biosorbents can be used in removing Mg ions due to low difference 
of the adsorbent capacity. It should be noted that the Mg ions removal 

data by adsorption method were not available in the literature. Therefore, 
the studies were carried out by walnut shell and comparison between two 

biosorbent was done. 

 
3.5. Adsorption isotherms 

 
Determining the equilibrium state and defining a good model are 

principles for the adsorption process design. Adsorption isotherms can 
aid to investigate this state. There is a mathematical relation between the 

equilibrium adsorption capacity on the adsorbent surface and the 
equilibrium solute concentration in aqueous solution. The Mg+2 adsorption 

is dependent on the initial concentration of Mg+2, significantly. To conduct 

the equilibrium experiments, amount of 1 g of adsorbent was added to 50 
ml of the solution with pH 10 and the different initial concentration of Mg+2  
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in the range of 100-200 mg/L at 25 °C. Each sample was placed on a 

shaker at a speed of 160 rpm. Experimental results showed that any 
variation of adsorption on hazelnut shell surface was not observed and 

time of 60 min was selected as equilibrium time. It was also presented in 
the experimental design as final time. Eventualy, two important 

equilibrium models of Langmuir and Freundlich isotherms were employed 
for prediction the equilibrium state. Linear form of the Langmuir isotherm 
is given as follows (Langmouir. 1916; Shojaeimehr et al. 2014): 

1

qe
=

1

KLqmCe

+
1

qm
                                                                                                   (5) 

where, qe (mg/g) is the equilibrium amount of Mg2+ adsorbed per unit 

mass of adsorbent, Ce (mg/L) is the equilibrium Mg2+ concentration in the 
solution, and qm (mg/g) is the maximum Mg ions adsorption capacity. qm 

indicates the maximum adsorption capacity for the adsorbent based on a 
monolayer coverage of metal ions that is fully covered the adsorbent 

homogeneous surface. KL (L/mg) is the Langmuir constant related to the 
affinity of binding sites (Shojaeimehr et al. 2014).  

 
Fig. 8. A comparison between the adsorbent capacity of hazelnut shell 

and walnut shell (pH=7, C0= 100 mg/L, adsorbent dosage=0.4 g). 

Table 10. The accuracy of the tests. 

Adsorption efficiency (R), % Amount of adsorption (q), mg/g  

Error, % Predicted (DOE) Experimental 
Error, 

% 
Predicted 

(DOE) 
Experimental Number 

-1.2 56.210 55.5 -3.2 5.729 5.55 1 

-2.4 48.656 47.5 -2.1 5.568 5.453 2 

-2 45.912 45 -2.2 5.108 4.994 3 

-1.3 54.775 54.046 -3.2 4.188 4.057 4 

-1.5 38.600 38.003 -1.5 4.824 4.75 5 

1.68  2.44 Mean error, % 

In addition. Linear form of the Freundlich isotherm is defined based on 

below equation (Freundlich. 1906; Shojaeimehr et al. 2014): 

log qe = log KF +
1

n
log Ce                                                                               (6) 

where, Kf and 1/n are the Freundlich constants that explain adsorption 

capacity and adsorption intensity, respectively. The Freundlich isotherm 
describes the heterogeneous surface (Shojaeimehr et al. 2014). Fig. 9 fits 

the experimental equilibrium data according to the Langmuir isotherm.  
As seen in the figure, the data are in good agreement with the Langmuir 

isotherm due to R2 of 0.9814. In addition, qm and KL was calculated as 

26.73 mg/g and 0.003 L/mg through slope and intercept of the plot. Fig. 
10 illustrates the data fitting of the equilibrium data based on the 

Freundlich isotherm. It can be found that the Freundlich isotherm model 

develops the data in a good level with n and KF equal 1.11 and 0.101, 

respectively. n value greater than unity confirms a favorable adsorption 
condition. Although the Langmuir isotherm is more appropriate than the 

Freundlich isotherm, the both models are powerful in data fitting with low 
error. 

 
Fig. 9. The data fitting through the Langmuir isotherm model. 

 
3.6. Adsorption kinetics 

 
One of the important studies in the adsorption process is to 

investigate the influence of contact time on the amount of adsorption, 

which is known as kinetic studies. In this study, amount of 0.4 g of 
adsorbent was added to 50 mL of the solution with pH 7 and the initial 

concentration of Mg+2  100 mg/L at 25 °C. Each sample was placed on a 
shaker at a speed of 160 rpm and time in the range of 20-60 min. As 
mentioned above, 60 min was equilibrium time.  

 

 
Fig. 10. The datafitting through the Freundlich isotherm model. 

 
To interpret the adsorption kinetics, two common kinetic models including 

pseudo-first-order and pseudo-second-order kinetic models were 
employed as follows respectively (Shojaeimehr et al. 2014): 

log( qe − qt) = log(qe) −
k1t

2.303
                                                                  (7)                                                                          

t

qt
=

1

(k2+qe
2)

+
t

qe
                                                                                                   (8)     

where, k1 is the rate constant of pseudo-first-order adsorption process 

(1/min), k2 is the pseudo-second-order rate constant of adsorption 

(g/mg.min). qe and qt are the amount of metal ions adsorbed (mg/g) at 
equilibrium and at time t; respectively. Figs. 11 and 12 depict data fitting 

based on the kinetic models. Concerning to these figures, it can be found 

that the R2 value of pseudo-first-order model is lower than pseudo-
second-order kinetic model as the correlation coefficient of pseudo-

second-order kinetic model is high and near the unity. In the pseudo-first-
order model k1 of 0.02878 and qe of 1.36 were calculated due to slop and 

intercept of the plot. In addition, k2 of -13.893 and qe of 3.819 were 
determined based on the pseudo-second-order kinetic model. By 

comparing the two models, it can be explained that the calculated 
equilibrium adsorption capacity of the pseudo-second-order kinetic model 

(qe,cal=3.819) was in good accordance with the experimental one 

(qe,exp=3.78). Therefore, the pseudo-second-order kinetic model was 
capable in developing the kinetic data. 
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Fig. 11. The pseudo-first-order plot for Mg2+ adsorption capacity onto 

hazelnut shell. 

 
3.7. Reusability tests of the adsorbent 

 
The reuse of the adsorbent reduces the overall cost of the adsorption 

process, especially at the industrial scale. In this work, 50 ml of the 
magnesium solution with a concentration of 200 ppm was set at pH 10 

(optimum conditions). Then, after adding 1 g of adsorbent, the solution 

was placed on a shaker at a speed of 160 rpm to reach equilibrium. The 
adsorbent was centrifugaly separated from the solution and the 

magnesium ions content in the solution was determined through the 
titration operation and the q value was calculated. The separated 

adsorbent was dried at 50 °C in an oven. Afterwards, the adsorbent was 
added to 50 ml of deionized water  at pH 4.  

 

Fig. 12. The pseudo-second-order plot for Mg2+ adsorption capacity onto 

hazelnut shell. 

Finally, after reaching equilibrium, the adsorbent was separated from the 

solution and the desorption percentage was calculated due to magnesium 

ions concentration. This experiment was repeated at different pH in the 
range of 5-10. Fig. 13 reveals the experiment results.  

Fig. 13. The  desorption percentage of the magnesium ions from the 

adsorbent surface at different pH. 

It obviously observed that with increasing pH the magnesium ions 

desorption decreased. Earlier, the adsorption amount increased with 

increasing pH due to reasons which were mentioned. Therefore, the 

desorption process was confirmed in terms of variations of pH. In addition, 
to obtain the adsorbent potential in reusing in the experiments, some tests 

were implemented at the optimum conditions. The results demonstrated 
that the adsorbent can be reused up to 4 steps. Regarding to Fig. 14, it 

can be seen that the adsorbent has a good performance in reusing in the 
experiments as maximum performance reduction was reported by 7 %. 

Although the number of reusability tests was low, it was powerful in 
adsorbing the magnesium ions at each step. 

 
Fig. 14. Reusability tests of the hazelnut shell at optimum conditions. 
 

4. Conclusions 
 

This study introduced the hazelnut shell as a cheap and abundant 
product in nature in order to remove the magnesium ions from hard water. 

Reducing the Mg+2 led to decrease the sediments of industrial 
equipments. The characterizations and structure of the biosorbent were 

analyzed by the XRF and SEM, respectively. In addition, FT-IR and XRD 

analyzers confirmed the adsorption of the Mg+2 on the surface of the 
hazelnut shell as a proper biosorbent. In second part, to evaluate the 

effects of the variables in univariate and interaction, response surface 
methodology (RSM) was employed. The RSM not only developed a 

quadratic model but applied analysis of variance (ANOVA) for statistical 
investigation of the process. The performance functions (R2=0.9971 (q), 

R2=0.9968 (R %)) revealed a great model in predicting the experimental 
data. The numerical optimization found the removal efficiency of 56.21% 

and the capacity of 5.729 mg/g with a total desirability of 0.862 (initial 

concentration: 200 mg/l, pH= 10, biosorbent dosage: 1 g, time: 59.816 
min) which was close to the experimental result. The ANN developed 

another model to validate and test of the RSM. Performance functions 
reported that the RSM and ANN excellently developed the q and R, 

respectively. In the present work, it can be concluded that the RSM and 
ANN are capable in forecasting similar adsorption processes without the 

use of complicated mathematical equations with a high precision. 
Because of the capability of hazelnut shell in Mg+2 reduction, it may be a 

competitor against other materials. Finally, the isotherm studies illustrated 

that the Langmuir isotherm fitted the data more appropriate than the 
Freundlich isotherm. In addition, the pseudo-second-order kinetic model 

superior described the magnesium ions adsorption kinetic. 
 

Appendix A 
 
a) Quadratic model 

Y = α0 + ∑ αixi
n
i=1 + ∑ αiixi

2n
i=1 + ∑ ∑ αijxixj

n
j=i+1

n−1
i=1 + ε             (9) 

b) Total desirability 

D = (d1 × d2 × … × dk)
1

k⁄                                                                    (10) 

 c) ANN model 

Yj = ft(∑ wjixi + bj
n
i=1 )                                                                            (11) 

d) Performance functions 

AAD =
1

N
∑ (

yexp,i−ymodel,i

yexp,i
)

2

                                           N
i=1                  (12) 

ARD =
1

N
∑ (

|yexp,i−ymodel,i|

yexp,i
)N

i=1                                                             (13) 

R2 =
∑ (yexp,i−ymodel,mean)2−∑ (yexp,i−ymodel,i)2N

i=1
N
i=1

∑ (ymodel,mean−yexp,i)2N
i=1

                                 (14) 

y = -0.0125x + 0.1337
R² = 0.9135
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