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 In this paper, for the first time, the discharge coefficient of triangular plan form weirs 
is simulated by the extreme learning machine (ELM). ELM is one of the powerful 
and rapid artificial intelligence methods in modeling complex and non-linear 
phenomena. Compared to other learning algorithms such as back propagation, this 
model acts rapidly in the learning process and provides a desirable performance in 
processing generalized functions. In this study, the Monte Carlo simulation is used 
for examining capabilities of numerical models. Also, the k-fold cross validation 
method with k=5 is utilized for evaluating abilities of the ELM models. Then, six 
ELM models are introduced by means of the parameters affecting the discharge 
coefficient of triangular plan form weirs. After that, the superior model is identified 
by analyzing the results of the mentioned models. The superior model predicts 
discharge coefficient values with reasonable accuracy. This model simulates the 
discharge coefficient as a function of the flow Froude number, vertex angle of the 
triangular plan form weir, the ratio of weir length to its height, the ratio of flow head 
to weir height and the ratio of channel width to weir length. For the best model, the 
Mean Absolute Error, Root Mean Square Error and determination coefficient are 
computed 1.173, 0.012 and 0.967, respectively. Furthermore, examination of the 
influence of the input parameters indicates that the flow Froude number is the most 
influenced factor in modeling the discharge coefficient. Also, the error distribution 
showed that roughly 86 % of the superior model results had an error less than 2 %. 
Furthermore, a practical equation was provided to compute the discharge 
coefficient. 

©2019 Razi University-All rights reserved. 
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1. Introduction 
 

Weirs are applied in open flumes to control and regulate the flow. 
As a weir is installed across the main axis of a flume, the flow is 

conducted towards the channel downstream as it reaches the normal 
weir location. Normal weirs are classified into two categories including 
sharp-crested and broad-crested. Sharp-crested weirs are in various 
shapes such as compound, rectangular, labyrinth, triangular and 
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circular. The shape of the weir significantly influences the discharge 
capacity. 

Due to the importance of the flow measurement in open channels 
and the hydraulics of weirs, there are several experimental and 
numerical studies conducted on the characteristics of the flow passing 
through such structures. Pratt (1914) was one of the first one who 
argued about the hydraulics of weirs. Hay and Taylor (1970) conducted 
an experimental study on triangular labyrinth weirs to shows that the 
discharge capacity of this type of weirs is more that trapezoidal labyrinth 
ones. They also stated that the placement of sheets in the triangular 
form is more efficient than the labyrinth mode. Moreover, Tullis et al. 
(1995) carried out an investigation on trapezoidal labyrinth weirs to put 
forward a relationship for computing the flow free surface passing over 
the normal weirs. They showed that the capacity of such weirs is in 
terms of the total head, the effective length of the weir and the discharge 
coefficient. Wormleaton and Soufiani (1998) examined the hydraulic 
behavior of the flow above triangular plan form weirs in an experimental 
study. Emiroglu and Baylar (2005) presented a study on the influence 
of vertex angle as well as triangular labyrinth weir slope variations. They 
indicated that the aeration of this weir is better than ordinary weirs. 
Bagheri and Heidarpour (2010) by conducting an experimental study 
proposed a formula for computing the rectangular weir discharge 
coefficient. Their equation is in terms of hydraulic and geometric 
parameters. Kumar et al. (2011) presented some equations for 
computing the discharge coefficient of such weirs in terms of different 
vertex angles of weirs. They calculated discharge coefficient in terms of 
the head of weir to height of weir. In addition, Crookston and Tullis 
(2013) carried out an experimental study to provide an approach for 
design and analysis of labyrinth weirs. 

In recent decades, artificial intelligence (AI) models and various 
neural network algorithms have been broadly utilized as a powerful and 
flexible tool in simulation of non-linear problems and pattern-cognition 
of different fields, for instance, the studies carried out by Khoshbin et 
al. (2016); Azimi et al. (2017); Parsaie and Haghiabi (2017); Akhbari et 
al. (2017) and Ebtehaj et al. (2018) can be noted. Bilhan et al. (2010) 
by means of some artificial neural network models modeled the 
discharge coefficient of side weirs. Furthermore, Dursun et al. (2012) 
employed the ANFIS model to propose a relationship for computing the 
discharge capacity of semi-elliptical side weirs. Additionally, Ebtehaj et 
al. (2015) simulated the discharge coefficient of rectangular side weirs 
by employing the gene expression programming. Also, a hybrid artificial 
intelligence model was presented by Azimi et al. (2017) in order to 
estimate discharge coefficient of side orifices. By reviewing the previous 
studies regarding the discharge capacity of triangular plan form weirs, 
it is observed that modeling of the discharge coefficient of such weirs 
using artificial intelligence (AI) techniques contains important hints for 
the design procedure. In other words, numerous AI studies have been 
done by various scholars in order to simulate different phenomena. 
Also, these techniques have a lot of privileges such as being time 
saving and inexpensive. On the other hand, discharge coefficient of 
weirs is considered as the most important parameter for designing the 
weirs. Therefore, in this paper, the discharge coefficient of triangular 
plan form weirs is simulated by means of the novel AI approach so-
called extreme learning machine (ELM). First, six ELM models are 
introduced by the parameters affecting the discharge coefficient. After 
that, the superior model is identified by examining the results of the 
mentioned models. Furthermore, the most important input variables in 
estimating the discharge coefficient is detected by ELM. 

 
2.  Materials and methods 
2.1. Extreme learning machine adjustments 
 

The extreme learning machine (ELM) is a novel model as single 
layer feed-forward neural networks (SLFNNs) provided by Huang et al. 
(2006). Using of this model is very simple with no parameter adjustment 
except the network architecture which should be determined before 
modeling. Thus, using of ELM removes a lot of complexities existing in 
gradient-based classical algorithms such as rate of learning, learning 
iterations and stuck in local minimums. Huang’s ELM selects input 
weights randomly and approximates output weights analytically (Huang 
et al. 2006).  Furthermore, modeling speed in ELM is much more than 
classical learning algorithms such as back-propagation and support 
vector machine (Rajesh and Prakash. 2011). In the algorithm, in most 
cases, simulation time is less than one minute and for quite complicated 
issues this time increases up to few minutes. However, obtaining an 
optimized modeling in available neural networks is not simply possible 
(Sánchez-Monedero et al. 2014). In this algorithm, the weight vector is 
linked to the input and output layer. In addition, initial neurons in the 

hidden layer are generated randomly and a unique optimal solution is 
obtained through the determination of the number of neurons during the 
learning process. In Fig. 1, the structure of the ELM model utilized in 
the study is illustrated.  

 

Fig. 1. Structure of ELM network applied in this study. 
 
The SLFNN with L hidden nodes is expressed in a mathematical 

form which combines the additive hidden node into a single approach 
and radial basis function (RBF) as follows (Huang et al. 2006). 
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where, L is the number of hidden nodes, ai and bi are the model learning 
variables in hidden nodes, βi is the weight vector linking the ith hidden 

node to the output node and ( )x,b,aG ii  is the output value of the ith 

hidden node based on the x input. The additive hidden node with the 

activation function (for instance, sigmoid) RR:)x(g → is defined as 

follows. 

( ) n
iiiii Ra),bx.a(gx,b,aG ∈+=              (2)  

where, ai is the weight vector connecting the ith hidden node of the 
hidden layer to the output layer, bi is the bias of the ith hidden node and 
𝑎𝑖 . 𝑥 is the internal multiplication of ai and x in the Rn space. There are 
various activation functions such as sigmoid (x). sine (x), hardlim (x), 
tribas (x) and radbas (x) and in this study the influence of each of them 
on discharge coefficient modeling results is investigated. The function 
𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥) can be presented for the radial basis function hidden node 

with the Gaussian function ( )( )RR:xg →  as follows. 

( ) +∈= Rb.),axb(gx,b,aG iiiii              (3) 

where, ai and bi are the influence factor and the center of the ith radial 
basis function node, respectively and R+ indicates a set of real positive 
values. The radial basis function network is a sample of SLFNN which 
in its hidden layers the RBF node exists. For N optional separate 

samples in the form of ( ) mn
ii RRt,x ×∈  in which xi (n×1) is the input 

vector and ti (m×1) is the objective vector, the SLFNN network with L 
hidden node is able to calculate N samples with very low error near to 
zero as follows (Huang et al. 2006a). 
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The matrix H is the hidden layer output related to the SLFNN 
network, so that the ith column of H is the ith output of the hidden output 

for the inputs N321 x,...,x,x,x . 

 

Fig. 2. Schematic of Kumar et al. (2011) model. 
 

2.2. ELM principle 
  

The ELM is a SLFNN with L neurons which can learn the network 
for approximation of N various samples with an error near to zero 
(Huang et al. 2006a). If the number of hidden neurons (L) is less than 
the number of separate samples (N), ELM is able to allocate random 
variables to hidden nodes and compute the output weight by means of 
the pseudo-inverse H with a very low error (ε>0). The hidden node 
variables in extreme learning machine (ai & bi) should not be adjusted 
during the training process, but they are allocated different cumulative 

values. The principles of extreme learning machine are presented in the 
following theories: 

Theorem one: Consider a SLFNN network with a number L of the 
hidden layers and an activation function g(x) that is completely 
distinguishable at any distance from R. For a separate sample L, which 
is estimated using continuous probability distribution, the output matrix 

of the hidden layer (H) is invertible and we have 0TβH =  

Theorem two: If ε>0 and the activation function ( ) RR:xg →  be 

distinguishable at any distance, we have NL ≤ , so that for each 

separate and optional input vector { }L,...,2,1i,Rx|x n
ii =∈ and for ( ){ }L

1iii b,a
=

which is produced randomly based on continuous probability 
distribution, the condition εTβH mNmLLN <×××

 holds. 

Given that hidden node parameters of ELM ( ){ }L
1iii b,a

=
should not be 

adjusted during the learning process and they are determined 
randomly, Eq. 5 is a linear equation and output weights are computed 
as follows. 

THβ +=                 (6) 

where, H+ is the  Moore-Penrose generalized inverse related to the 
hidden layer output matrix (H). 

 
2.3. Experimental model 
 

In this paper, experimental data measured by Kumar et al. (2011) 
are applied in order to simulate the discharge coefficient of triangular 
labyrinth weirs. Kumar et al. (2011) experimental model is composed of 
a rectangular flume with length, width and height of 12m, 0.28m and 
0.41m, respectively. In the experiments conducted by Kumar et al. 
(2011) a triangular labyrinth weir is located at an 11m distance from the 
beginning of a rectangular channel. In Table (1) the range of the 
parameters applied in this paper is arranged. In this table, the 

parameters w, θ , h , Q and L are the weir crest height, vertex angle of 

the triangular plan form weir, head above the weir, flow rate and length 
of the weir, respectively. The layout of Kumar et al. (2011) model is 
shown in Fig. 2. 

 
Table 1. Range of parameters used by Kumar et al. (2011) for estimating discharge coefficient. 

Standard deviation Variance Average Minimum Maximum Parameter 

50.16 2516 102.44 180 30 θ, ° 
0.005 2.556E-05 0.102 0.108 0.092 w, m 
0.017 0.0003 0.038 0.073 0.008 h, m 
0.003 0.00001 0.007 0.013 0.001 Q, m3/s 
0.277 0.077 0.492 1.082 0.280 L, m 

2.4. Discharge coefficient 
 

Discharge coefficient of sharp-crested weirs is considered in terms 
of discharge (Q), weir length (L) and weir crest height (h). 

  
 (7) 

In contrast, Kumar et al. (2011) in their experimental study 
measured values of the vertex angle, weir height, head above the weir, 
flow rate and weir length. 

Therefore, in the current study, the Froude number ( )Fr , the vertex 

angle (ɵ), the ratio of weir length to its height (L/w), the ratio of flow 
head to weir height (h/w) and the ratio of flume width to weir length (B/L) 
are introduced as the input parameters. Furthermore, to examine the 
influence of all parameters, six ELM models are generated by the 
mentioned parameters. In other words, through the combination of 
different parameters, six ELM models are introduced. The combinations 
of different parameters for the ELM models are shown in Fig. 3. 

In this study, the Monte Carlo simulations (MCs) are applied for 
examining the abilities of the numerical models. The MCs is a broad 
categorization of computational algorithms that utilizes random 
sampling for estimating numerical results. The MCs are usually 
implemented for modeling mathematical and physical systems which 
are not solvable by means of other methods. Additionally, the k-fold 
cross validation approach is utilized for verifying numerical models. In 
this study, k is considered equal to 5. In the method, the dataset is 
divided into k sub-samples with the same size randomly. Then, 
amongst k sub-samples, one sub-sample is selected as the training 
data and the remaining (1/k) are applied as the test data of the 

mentioned model. It should be noted that the main benefit of the 
approach is the random repetition of sub-samples in the test and 
training process of the numerical model for all data and each data is 
used exactly once for validation of the artificial intelligence model. The 
schematic layout of k-fold cross validation is illustrated in Fig. 4. Next, 
the process repeats k times so that each k sub-sample is used exactly 
once as the training data. The results calculated from the mentioned k 
specified layers are averaged and presented as estimation with 
reasonable accuracy. 

 

Fig. 3. Combinations of input parameters for different ELM models.  
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3. Results and discussion 
 

In this study, the mean absolute percent error (MAPE), root mean 
square error (RMSE) and determination coefficient (R2) are employed 
as follows for assessing accuracy of the numerical models. 

 

 (8) 

 

(9) 

 

   
(10) 

here, Cd(Observed)I, Cd(Predicted)I and n are the experimental values, 
simulated discharge coefficient and the number of measurements, 
respectively. ELM has some activation functions entitled "Sigmoid", 
"Sin", "Hardlimit", "Tribas" and "Radbas". It should be noted that the 

ELM (1) model is a combination of all input parameters. In other words, 
this model takes into account the influence of all input variables. So, for 
ELM (1), the results of the activation functions are evaluated. In Table 
2, the values of MAPE and RMSE of the activation functions are shown 
for the ELM (1) model. Based on the simulation results, the maximum 
MAPE is obtained for Tribas equal to 24.416. In addition, RMSE for this 
function is estimated equal to 0.236. Among all activation functions, 
sigmoid has the lowest error. For example, the MAPE and RMSE for 
this activation function are computed 1.174 and 0.012, respectively. In 
the following, the results of different ELM models are examined. In Fig. 
5 the scatter plots for the ELM (1) to Elm (6) models are shown. In 
addition, the comparison of MAPE, RMSE and R2 for six ELM models 
is depicted in Fig. 6. As shown in Fig. 3, ELM (1) simulates discharge 
coefficient through the combination of five input parameters including 

Froude number ( )Fr , vertex angle ( )θ , the ratio of weir length to its 

height (L/w), the ratio of the flow head to weir height (h/w) and the ratio 
flume width to weir length (B/L). Also, among all ELM models, this 
model has the highest correlation with the experimental results. 
Furthermore, this model has the lowest error. The values of MAPE and 
RMSE for ELM (1) are calculated 1.174 and 0.012, respectively. 

 

Fig. 4. Schematic layout of k-fold cross validation. 

 

Table 2. Values of MAPE, RMSE and R2 of activation functions for ELM (1) model. 

Activation function MAPE RMSE R2 

Sigmoid 1.174 0.012 0.967 
Sin 1.305 0.013 0.965 

Hardlim 6.990 0.063 0.178 
Tribas 24.416 0.236 0.176 

Radbas 1.811 0.017 0.943 
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Fig. 5. Scatter plots for ELM (1) to ELM (6) models.  
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Fig. 6. Comparison of MAPE, RMSE and R2 for six ELM models. 
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Fig. 7. Error distribution for ELM 1 to ELM 6 model. 

In addition, R2 for this model is obtained equal to 0.967. It should 
be noted that in this paper five ELM (2) to ELM (6) models simulate 
discharge coefficient values of triangular plan form weirs by combining 
four input parameters. For example, ELM (2) is in terms of the Froude 
number, the vertex angle of the triangular plan form weir, the ratio of 
weir length to its height and the ratio of flow head to weir height. For 
ELM (2), the influence of the ratio of flume width to weir length (B/L) is 
neglected. For this model, MAPE is calculated 1.184. Furthermore, for 
ELM (2) the values of RMSE and R2 are approximated 0.0134 and 
0.967, respectively. Among all ELM models introduced with a 
combination of four input variables, ELM (2) has the highest accuracy 
in simulating the discharge capacity of weirs. For the ELM (3), R2 is 
0.961. The model estimates discharge coefficient using four inputs 
including Fr, θ, L/w and B/L. For modeling discharge coefficient of 
triangular weirs by the ELM (3), the influence of the ratio of head to 
height (h/w) is removed. In contrast, the MAPE and RMSE for the model 
are computed 1.263 and 0.014, respectively. However, the influence of 
the ratio of length to height (L/w) is removed for the ELM (4) model. In 
other words, this model is in terms of the Froude number, the vertex 
angle of the triangular form plan weir, the ratio of the head to weir height 
and the ratio of channel width to length (B/L). For this model, the MAPE, 
RMSE and R2 are obtained 2.021, 0.019 and 0.925, respectively. The 
values of MAPE and RMSE for ELM (5) are computed 1.435 and 0.014, 
respectively. However, R2 for the mentioned model is predicted to be 
0.958. For ELM (5) the influence of the vertex angle of weir (θ) is 
eliminated. This model approximates discharge coefficient values of the 
weirs as a function of Fr, L/w, h/w and B/L. Among all ELM models with 
four inputs, ELM (6) has the lowest accuracy in predicting discharge 
coefficient. MAPE and RMSE for this model are 3.124 and 0.033, 
respectively. In addition, R2 for this model is obtained equal to 0.773. 
For simulating discharge coefficient by the Elm (6) model, the impact of 
the Froude number is eliminated. Thus, by eliminating this parameter, 
accuracy of the numerical model is significantly reduced. This model 
estimates discharge coefficient in terms of vertex angle of weir, the ratio 
of length to height, the ratio of flow head to height and the ratio of flume 
width to weir length. Thus, as shown, the best model computes 
discharge coefficient values using all input parameters. It should be 
reminded that the best model estimates discharge coefficient of weirs 
with reasonable accuracy. Additionally, according to the analysis of the 
results obtained from six ELM model, the flow Froude number (Fr) is 
detected as the most effective parameter in modeling discharge 
coefficient. 

 
4. Conclusions 
 

Weirs are used in open channels in various forms like rectangular, 
circular and triangular to regulate and measure the flow. To achieve an 
appropriate design, the determination of the discharge coefficient is 
crucially important. In the paper, the discharge coefficient of the 
triangular weirs was estimated by the extreme learning machine (ELM). 

To achieve the optimized model by the input parameters, six different 
ELM models were introduced. According to the modeling, the best 
model was detected. The superior model simulated discharge 
coefficient using the Froude number (Fr), the vertex angle of the 
triangular plan form weir (θ), the ratio of weir length to its height (L/w), 
the ratio of flow head to weir height (h/w) and the ratio flume width to 
weir length (B/L).  For the superior model, the MAPE, RMSE and R2 are 
commutated 1.173, 0.012 and 0.967, respectively. Furthermore, the 
examination of the influence of the input parameters indicated that the 
Froude number is the most important factor in modeling the discharge 
coefficient. Also, an error distribution analysis was performed for the 
numerical models and showed that approximately 86 percent of 
discharge coefficient modeled using the superior model had an error 
less than 2 percent. Ultimately, an equation was presented for 
calculating the discharge coefficient of the triangular plan form weirs. 
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