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 In this study, for the first time, groundwater level (GWL) variations of the Sarab-e 
Qanbar well located in the city of Kermanshah, are simulated over a 13-year period 
by a hybrid model named WANFIS (wavelet-adaptive neuro fuzzy inference 
system). In order to develop the hybrid model, the wavelet transform and the 
adaptive neuro fuzzy inference system (ANFIS) model are utilized. Furthermore, 
the 9 and 4 year data are used for training and testing the artificial intelligence 
models, respectively. Moreover, the effective lags are detected by the 
autocorrelation function (ACF) and then eight different models are developed for 
each of the ANFIS and WANFIS models using them. After that, all mother wavelets 
are evaluated and Dmey mother wavelet is chosen as the most optimal. For this 
mother wavelet, the values of scatter index (SI), variance account for (VAF) and 
Root mean square error (RMSE) are obtained 0.192, 94.951 and 3.117, 
respectively. Next, the superior model is detected through the analysis of the results 
obtained by all ANFIS and WANFIS models. The superior model estimates the 
objective function values with reasonable accuracy. For example, the correlation 
coefficient (R), Scatter Index (SI) and variance account for (VAF) for this model are 
obtained 0.974, 0.192 and 94.951, respectively. The modeling results indicate that 
the wavelet transform noticeably enhances the ANFIS model accuracy. Finally, the 
lags of the time series data for the Sarab-e Qanbar well including (t-1), (t-2), (t-3) 
and (t-4) are introduced as the most effective lags. 

©2020 Razi University-All rights reserved. 
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1. Introduction 
 

Groundwater exploitation is one of the main sources for supplying 
drinking water as well as agriculture and other purposes in dry and 

semi-dry regions of the planet. In recent years, due to sequent droughts 
and climate change, the water extraction amount has increased. In som 

e areas of Iran, groundwater levels have been dropped significantly. 
Thus, the estimation and modeling groundwater level fluctuations are 
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vitally important. Additionally, various numerical models such as 

artificial intelligence (AI) algorithms and soft computing (SC) methods 
have been implemented by many researchers for modeling various 

problems (Akhbari et al. 2017; Azimi et al. 2018) and this phenomenon. 
For instance, Dash et al. (2010) and Kisi and Shiri (2012) estimated 

different groundwater parameters by artificial intelligence algorithms or 
neuro-fuzzy models. Then, Chitsazan et al. (2013) simulated 

groundwater level variations in aquifers using the artificial intelligence 
network. They run their artificial intelligence network with two hidden 

layers and demonstrated that the simulated and observed values are 

close to each other in this mode.  Also, Khaki et al. (2015) simulated 
groundwater level variations during a seven-year period using the 

neural model and also the (adaptive neuro fuzzy inference system) 
ANFIS model. They developed various models adopting time-series 

and effective parameters and eventually introduced the best one. They 
stated that the ANFIS model has higher accuracy. Additionally, 

Ebrahimi and Rajaee (2016) provided three hybrid AI models for 
forecasting groundwater levels within an eleven-year period through the 

combination of the wavelet model with the artificial intelligence network, 

the linear regression and the support vector. Barzegar et al. (2017) 
managed to simulate the Maraqe-Bonab aquifer for evaluating the 

efficiency of the wavelet-group method of data handeling (WA-GMDH) 
method and wavelet-extreme learning machine (WA-ELM) models as 

well as wavelet-based models in predicting groundwater levels. They 
used 367 monthly groundwater level data for testing and training the 

model. Finally, they concluded that the wavelet-based models improve 
the efficiency of the group method of data handeling (GMDH) and 

extreme learning machine (ELM) models in forecasting groundwater 

levels. Furthermore, Liu et al. (2018) proposed some hybrid models for 
approximating groundwater level fluctuations by combining the 

empirical mode decomposition (EMD), particle swarm optimization 
(PSO), phase space reconstruction (PSR), and extreme learning 

machine (ELM) models. They proved that the EMD and PSO models 
considerably enhance the accuracy of the ELM model.  On the one 

hand, the simulation of groundwater levels (GWL) has attracted the 
attention of many researchers due to the importance of groundwater 

resources. This means that this water resource plays a vital role in 

supplying water for various purposes in different areas all over the 
world. On the other hand, different artificial intelligence (AI) techniques 

are considered as precise and efficient tools for estimating groundwater 
level (GWL) variations in the long-term. AI models have reasonable 

accuracy and using them leads to saving in time and computational 
costs.  

Therefore, in the current study, the groundwater level variations of 
the Sarab-e Qanbar well located in the city of Kermanshah, are 

simulated for a 14-year period by means of the ANFIS model and the 

WANFIS hybrid technique for the first time. To develop the hybrid 
model, the ANFIS models are combined with the wavelet transform. To 

train the artificial intelligence models, the 9-year data are used and the 
4-year data are employed for testing them. It should be noted that the 

effective lags of the time-series data are detected by the auto-
correlation function. It is worth mentioning that Dmey mother wavelet is 

chosen as the most optimal mother wavelet. In contrast, the superior 
models and the most effective lags are identified through the analysis 

of the modeling results. 
 

2. Materials and methods 

 
Initially, the study area is completely introduced and then the 

applied numerical models including adaptive neuro fuzzy inference 
system (ANFIS), wavelet and hybrid model (WANFIS) are described. 

Then, the most important lags are identified using an autocorrelation 
function. After that, the results yielded by all numerical models are 

analyzed. Finally, the superior model and the most effective input lags 
are detected. 

 

2.1. Study area 
 

In this paper, the study area is located in the Sarab-e Qanbar 
region, south of Kermanshah. Sarab-e Qanbar has a warm and 

moderate climate. This area has rainy winters and cool summers. In 
this region, the average annual temperature is about 12.9 °C and the 

average rainfall is near 440 mm. The geographic coordinates of this 
area are 34.2870° N, 47.0547° E. In this paper, the observational well 

located within the region is utilized for verifying the artificial intelligence 

models. The northern and eastern margins and some parts of the 
northwestern region of this plain are covered with Karstic limestones, 

which are mostly Karstic. The East-southern and northwestern parts are 

restricted to altitudes with different facies. Geologically, the study area 
is composed of two zones including Zagros and crushed. These two 

zones together with the Khuzestan Plain constitute the entire Zagros 
structure. The oldest unit of the stones surrounding the Miandarband 

plain belong to Jurassic. Due to this, the thickness, the type and gravity 
of alluvium in this plain are different at different points. In this plain, 

groundwaters are in alluvials with the thickness of 50-200 m, most of 
which are from silicate clay, fine and coarse sand, and rug. In general, 

the foothills and the plains are composed of large coarse aggregates 

causing good permeability in these areas. The bedrock of the 
Kermanshah plain is formed of radiolarite rocks. In the plain of 

Kermanshah, there are free and artesian aquifers and reservoirs of 
groundwater in this area are formed in alluvial deposits of the fourth 

period, which are the result of erosion of the marginal heights of the 
plain. The constituents of sediments are in the range of water table 

include cobblestone, gravel, sand, silt and clay. The main recharge 
source of the existing groundwater table, irrespective of the 

atmospheric precipitation on the plain, is some streams originating from 

the range of adjacent heights and enter the area of the plain, as well as 
the presence of abundant springs, which are mainly karstic. 

Furthermore, the transmissivity of the groundwater table in different 
areas of the study area is different, so that in the margin of the table 

due to steep slope and low viscosity of alluvium is about 500 square 
meters per day and even less, and in the central areas to a maximum 

of 10,000 square meters per day. The observational values were used 
monthly in a 13-year period from 2002 to 2015. The observed values 

were monthly measured by the regional water company of Kermanshah 

over this period. The measurement of the groundwater levels was 
mostly performed using a submersible pressure transmitter. These 

hydrostatic level transmitters are small in diameter and directly 
suspended by their cable into wells, boreholes, deep bore wells or 

monitoring wells. The groundwater level measurement was logged 
locally or transmitted back to the control unit or PLC by telemetric 

systems or underground lines. The groundwater level variations, as well 
as the monthly rainfall in this region, were evaluated for 13 water years 

and based on the results it was concluded that the groundwater level 

variations in the plain have a decreasing trend so that during these 13 
years about 5.77 m drawdown has been measured in the aquifer. The 

mentioned drawdown is due to the recent droughts and also increasing 
the withdrawal amount. The observational data were used in the form 

of the time-series data for 156 consecutive months. Furthermore, 9 
years of these observational data were used for training and 4 years for 

testing the artificial intelligence models. The location of the Sarab-e 
Qanbar well is illustrated in Fig. 1. 

 

2.2. Adaptive neuro fuzzy inference system (ANFIS) 
 

ANFIS is a universal estimator provided for the first time by Jang 
(1993). This technique is capable to forecast complex real functions 

with an acceptable degree. The structure of this method consists of a 
number of nodes directly connected to each other. Each node has 

adjustable parameters (Jang et al. 1997). If a fuzzy inference system 
has three parameters (x, y and z) as inputs and the parameter f as the 

network output, assuming we have two fuzzy rules, so: 

1 1 1

1 1 1 1 1

1 : , , ,Rule IF x is A y is B and z is C

THEN f p x q y r z s   
                                                           (1) 

2 2 2

2 2 2 2 2

2 : , , ,Rule IF x is A y is B and z is C

THEN f p x q y r z s   

                                            (2) 

where, f1 and f2 represents the output function related to the first and 
second rules, respectively. In general, the ANFIS system has five 

different layers. Each node in the first layer is taken into account as an 

adaptive node as follows:  

 
1,

1, 2
i i

O A x i                                               (3) 

where, Ol,i is the membership function of the fuzzy set A, Ai is the 
linguistic label like "big" or "small" depending to the node function and 

x denotes the ith input node. The membership function specifies the 
input component x which is satisfied by the quantity meter Ai. The 

membership function (φAi(x)) is usually chosen as Gaussian in the 
domain of 0 and 1.    

 

2

exp
i

i

i

x a
A x

b



 

  
     

                             (4) 
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where, {ai, bi}are Gaussian parameters so that changing them leads to 

create Gaussian functions with different shapes. Hence, there are 
various functions for Ai (Jang 1993). The parameters of this layer are 

known as "premise parameters". Each node in the second layer is 
multiplied by input signals and provides the resulted product as the 
output. The output of each node is known as the ''firing strength".  

     
2,

1, 2
i i i i i

O w A x B y C z i                                                 (5) 

In the third layer, the ratio of the firing strength of the ith rule to the total 

firing strengths for the ith node is calculated as follows: 

3,

1 2

1, 2
i

i
i

w
O w i

w w
  



                             (6) 

Each node in the fourth layer is presented as follows: 

 
4,

i i
i i i i i i

O w f w p x q y r z s                                 (7) 

where, {pi, qi, ri, si}is the set of parameters and w  is the output of the 

third layer. The parameters of this section are known as the 

"consequent parameters". Finally, the node existing in the fifth layer 
known as the output node is calculated as the sum of all input signals 

as follows: 

1

5, 1

1

i ii

i
i ii

ii

w f
O w f

f







 





                             (8) 

 

2.3. Wavelet transform 
 

The wavelet transform presented by Grossman and Morlet (1984) 

can provide data related to time and frequency simultaneously, so 
represents time-frequency related to time data very well. Unlike other 

analysis techniques, the wavelet transform is capable to take into 

account different aspects of a time-series like trend and instability 
(Adamowski and Sun 2010; Singh 2012). Unlike the Fourier transform 

which uses a sinusoidal wave, in the wavelet transform a pseudo-wave 
(ψ) is utilized which can be modified in the form of the base function 

(ψa,b). This function derives from variations in deviation from the initial 
waveform. In the following equation, a and b are scale and translation 
parameters, respectively. 

 
,

1
a b

t b
t

aa
 




 
 
 

                                         (9) 

 
2.4. WANFIS hybrid method 

 

Before start modeling groundwater levels in different months using 
WANFIS, the data are divided into two groups including training and 

testing. All data used in this study are related to 156 different months. 
To train the model, 108 months (9 years) are utilized as the model 

training samples and the level values for the next 4 years (48 months) 
are forecasted by the WANFIS method. After the classification of the 

data and determination of the training data, the influence of different 
time lags and their direction and correlation level with each other should 

be evaluated. Thus, different time lags are examined by the 

autocorrelation function (ACF) (Fig 3). Based on this graph, the 
significant effect of the basic lags and the lack of period in time-series 

are shown. Therefore, various combinations are suggested as follows: 
WANFIS1 Q(t) = f(Q(t-1)) 

WANFIS2 Q(t) = f(Q(t-1), Q(t-2))  
WANFIS3 Q(t) = f(Q(t-1), Q(t-2), Q(t-3)) 
WANFIS4 Q(t) = f(Q(t-1), Q(t-2), Q(t-3), Q(t-4)) 

 
Fig. 1. Geographical location of under study well. 

 

Fig. 2. ACF chart for groundwater levels. 

 

After the determination of the samples used for training the model 

and also the examination of different input combinations, the type of the 
wavelet function and its decomposition level must be specified. The 

type of time-series and nature of the interested event (groundwater 
level) are the basic points in choosing the mother wavelet. In fact, the 

wavelet function must be chosen so that to be geometrically well-
matched to the curve of the interested time series to perform the 

mapping operation with a higher ability. The wavelet functions used in 
this study are dmey, bior, coif, sym, haar and db. In addition, the 

following relationship is employed to determine the decomposition 
level:  

  int logl N             (10) 

where, l represents the decomposition level, N is the number of 

samples in the learning mode and int denotes the integer part of the l 
value. Given that N is equal to 108, the composition level is considered 

equal to 2. 
  

2.5. Criteria for examining accuracy of numerical models 
 

In the current study, in order to evaluate the accuracy of the 
introduced numerical models, the correlation coefficient (R) ،variance 

account for (VAF) ،root mean square error (RMSE) ،scatter index (SI) ،
mean absolute relative error (MARE) and nash-sutcliffe efficiency 
coefficient (NSC) are used as follows:  
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  

   

1

2 2

1 1

n

i ii

n n

i ii i

F F O O
R

F F O O



 

 


 



 

                                           (11) 

 

 

var
VAF 1 100

var

i i

i

F O

F


  
 
 
 

                           (12) 

  


n

1i

2
ii OF

n

1
RMSE

                           (13) 

RMSE
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O


                             (14) 

1

1 n
i i

i i

F O
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n O

  
  

 


                            (15) 

 

 

2

1

2

1

NSC 1

n

i i

i

n

i

i

O F

O O







 







                            (16) 

where, 
iO ,

iF , O and n represent observational values, values 

predicted by numerical models, the mean of observational values and 
the number of observational values, respectively. In the following 

sections, the results of different simple and hybrid artificial intelligence 
models along with the performance of the mother wavelets are 

evaluated. It should be noted that the results of these models are 

examined for the test mode conditions.  
 

3. Results and discussion 

3.1. ANFIS models 

 
In this section, the accuracy of different ANFIS models is examined. 

The results of the statistical indices calculated for all ANFIS models are 
shown in Fig. 3. It should be noted that ANFIS1 estimates the 

groundwater level values with the lag (t-1). For this model, the values 
of R and SI are calculated 0.722 and 0.597, respectively. In addition, 

for ANFIS1, the values of RMSE, MARE and NSC are obtained 9.674, 
0.880 and -0.018, respectively. It is worth noting that the ANFIS2 model 

simulates the objective function values by means of the lags (t-1) and 

(t-2). The values of different statistical indices such as VAF, R and SI 
for ANFIS2 are approximated 48.611, 0.700 and 0.614, respectively. 

For the mentioned model, RMSE and NSC are computed 9.947 and 
0.103, respectively. It should be considered that ANFIS3 simulates the 

groundwater level values using the lags (t-1), (t-2) and (t-3). 
Furthermore, the values of MARE, RMSE and SI for the mentioned 

model are obtained 0.689, 8.174 and 0.504, respectively. For this 
model, VAF and R are calculated 65.342 and 0.813, respectively. It is 

worth mentioning that ANFIS4 estimates the groundwater level values 

using all input lags. In other words, this model is a function of the lags 
(t-1), (t-2), (t-3) and (t-4). For this model, the values of R, VAF and NSC 

are 0.746, 55.400 and 0.296, respectively. In addition, RMSE and SI for 
ANFIS4 are calculated 9.269 and 0.572, respectively. Thus, as shown, 

the ANFIS2 model has the lowest accuracy and ANFIS4 has the highest 
accuracy among all ANFIS models. Furthermore, the lags (t-1), (t-2), (t-

3) and (t-4) are identified as the most effective lags. Also, the 
comparison of the groundwater level values forecasted by the ANFIS 
models versus the observed ones is shown.     

  

  

  
Fig. 3. Results of statistical indices for different ANFIS models. 
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Fig. 4. Comparison of groundwater level values predicted by ANFIS models with observed values. 

 

3.2. Mother wavelets 
 

In this section, the mother wavelets are evaluated. Generally, the 
wavelet has families entitled Daubechies (db), haar, Symlets (sym), 

Coiflets (coif), Biorthogonal (bior) and DMeyer (dmey). In Fig. 5, the 
statistical indices computed for these mother wavelets are illustrated. 

Based on the modeling results, Dmey wavelet estimates the 
groundwater levels values with higher accuracy than other mother 

wavelets. For this mother wavelet, the values of SI, VAF and RMSE are 
obtained 0.192, 94.951 and 3.117, respectively. Furthermore, the 

values of R and MARE for dmey are approximated 0.974 and 0.437, 

respectively. It should be noted that for Haar mother wavelet, the values 
of RMS and NSC are computed 7.451 and 0.485, respectively. Among 

all the members of the Daubechies family, db2 estimates the 
groundwater level values with higher accuracy. For this mother wavelet, 

the values of MARE and R obtained 0.659 and 0.897, respectively. 
Also, according to the results of the other mother wavelets, sym2, Coif2 

and bior1.1are detected as the superior members of the Symlets, 
Coiflets and Biorthogonal mother wavelets, respectively. For instance, 

VAF and R for sym2 are estimated 76.645 and 0.880, respectively. 
However, RMSE and MARE for Coif2 are 4.696 and 0.603, 

respectively. Besides, for bior1.1, SI, VAF and R are computed 0.460, 
71.795 and 0.854, respectively. Based on the modeling results, Dmey 

mother wavelet is chosen as the best mother wavelet for combining with 

the ANFIS model. 

  

  

  
Fig. 5. Results of statistical indices for different mother wavelets. 
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3.3. WANFIS models 

 
In this section, the hybrid WANFIS models are assessed. The 

results of different statistical indices for all WANFIS models are 
presented in Fig. 6. According to the modeling results, the wavelet 

transform significantly increases the ANFIS model efficiency. In other 
words, the accuracy of all WANFIS models is higher than the ANFIS 

models. For example, VAF for WANFIS1 is about 2 % higher than the 
ANFIS1 model. In addition, RMSE, SI and NSC for this hybrid model 

are estimated 9.559, 0.590 and -0.009, respectively. Moreover, the 

values of R and SI for WANFIS2 are calculated 0.858 and 0.444, 
respectively. It is worth mentioning that VAF for WANFIS2 increases 

1.5 times compared to ANFIS2. Furthermore, NSC and RMSE for 
WANFIS2 are obtained 0.594 and 7.190, respectively. Moreover, the 

wavelet transform enhances VAF of the WANFIS3 about 1.35 times 

compared to the ANFIS2 model. It should be noted that MARE, R and 
NSC for WANFIS3 are approximated 0.487, 0.942 and 0.884, 

respectively. By contrast, SI, RMSE and VAF for WANFIS4 are 0.192, 
3.117 and 94.951, respectively. The examination of this model exhibits 

that the wavelet transform increases the VAF value of WANFIS4 about 
1.7 times. In Fig. 7, the comparison of the groundwater level values 

simulated by the hybrid models with the observed data is illustrated. 
Thus, the wavelet transform improves the accuracy and the efficiency 

of the ANFIS models. Furthermore, the WANFIS 4 model is introduced 

as the superior model in estimating the groundwater level values in the 
Sarab-e Qanbar observational well. In addition, the lags (t-1), (t-2), (t-

3) and (t-4) are the most effective ones.   

  

  

  

  
Fig. 6. Results of statistical indices for different WANFIS models. 
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Fig. 7. Comparison of groundwater level values simulated by WANFIS models with observed data.  

 

4. Conclusions 
 

Owing to the importance of groundwater resources as one of the 
main water supply sources, the estimation and the simulation of 

groundwater level (GWL) variations in arid and semi-arid regions of the 

world like Iran is crucially important. In this paper, the long-term 
fluctuations of the groundwater level during a 14-year period of the 

Sarab-e Qanbar well located in the city of Kermanshah was simulated 
by means of the ANFIS model and also the WANFIS hybrid method. To 

develop the hybrid model, the ANFIS model and the wavelet transform 
were combined. Furthermore, thorough the analysis of the modeling 

results, Dmey mother wavelet was selected as the most optimal 
member of the mother wavelets. For this mother wavelet, the values of 

SI, VAF and RMSE were obtained 0.192, 94.951 and 3.117, 

respectively. In addition, the effective lags of the time-series data were 
detected by the autocorrelation function (AFC) and then four various 

models were produced for each of ANFIS and WANFIS models. The 
results of the simulations exhibited that the wavelet transform 

considerably improves the accuracy of the ANFIS model. For instance,  
the VAF index for the superior models of ANFIS and WANFIS were 

obtained 55.400 and 94.951, respectively. It is worth noting that 
WANFIS4 simulated the groundwater level values in the Sarab-e 

Qanbar observational well with reasonable accuracy. For example, the 

values of R and SI for this model were computed 0.974 and 0.192, 
respectively. Besides, RMSE and NSC for this hybrid model are 

estimated to be 9.559 and -0.009, respectively. Furthermore, the 
analysis of the simulations demonstrated that the lags (t-1), (t-2), (t-3) 

and (t-4) are the most effective lags. 
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