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Friction factor is an important hydraulic parameter for design of pipeline systems. 
There are several formulations for calculating the friction factor, among which 
Colebrook–White equation is the most accurate and repute formula. Owing to the 
implicit nature of friction factor in Colebrook–White equation, iterative methods are 
required to calculate this factor. In this study, Regula Falsi iterative numerical 
scheme was used to solve the implicit nonlinear equation of friction factor in the 
Mathematica programming tool. Case examples including different series and 
parallel pipeline systems were presented and solved. The results indicated high 
capability of Regula Falsi method in solving both the parallel and series systems. It 
was found that the solution by Mathematica differ significantly from conventional 
methods and can be desirably used for solving different hydraulic problems. The 
use of Mathematica with its huge features permits the researchers to be more 
professional in formulations of engineering problems and interpretations of results. 
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1. Introduction 
 

Friction factor is one of the most important hydraulic parameters in 
design of close conduits and pipeline networks. Accurate determination 
of this parameter can directly influence the pipe and pump sizing and 
reduce the total costs of such projects. Furthermore, the hydraulic 
balance of pipeline network is established by correct estimation of 
friction factor. Therefore, the determination of friction factor has always 
been of great interest to engineers and scientists. In this way, several 
theoretical and empirical formulas were presented for determination of 
friction factor including those documented in literature (Churchill. 1977; 
Haaland. 1983; Slatter. 1995; Avci and Karagoz. 2009; Papaevangelou 
et al. 2010; Danish et al. 2011; Swamee and Aggarwal. 2011; Morrison. 
2013 and Taler. 2016). During the last decade, worthy attempts were 
applied for accurate calculating the friction factor. Sonnad and Goudar 
(2008) presented a simple formula for computing the friction factor at 
rough pipes with turbulent flow. The accuracy of this formula was 
somewhat acceptable but it was limited to the turbulent flow regime. 
Diniz and Souza (2009) presented a number of explicit relations to 
calculate friction factor for different flow regimes. These relations did 
not have high precision.  Li et al. (2011) presented an explicit equation 
for accurate calculation of friction factor at smooth pipes. The equation 
was not applicable for all pipe flow regimes. Cojbasic and Brkic (2013) 
developed two explicit approximations based on genetic algorithms 
optimization for calculation of the Colebrook friction factor. The models 
were very accurate so that the relative error was negligible for both 
models. The main disadvantage of these models was their high 
complexity. Li and Huai (2016) derived an explicit equation for 
calculating friction factor in the fully turbulent flows and stated that the 
proposed model exhibits high computational accuracy for the pipe 
experiment data.  

This relative precise model could not be generalized to all flow 
regimes. Offor and Alabi (2016) developed a regression model in 
explicit form consisting two non-linear functions. They claimed that their 
model was more accurate and requires far less computational time for 

predicting pipe friction factor. Albeit, this model was only usable for fully 
developed turbulent flow regime. 

As seen, several models were recently proposed to substitute 
implicit Colebrook White equation. But almost all these models were 
developed by considering the accuracy only, without accounting the 
computational burden. Indeed, all of proposed models require the 
computation of many complicated non-linear equations to achieve a 
sufficiently accurate solution without attention to this point that most 
realistic computer resources cannot easily manage such an excessive 
burden. That’s while, solution of practical engineering problems (design 
of pipeline systems) does not require such precision. So it can be 
claimed that these models are obviously too complex to be of practical 
use. 

Nevertheless, it should be admitted that one of the best 
approximations to friction factor is given by the well-known Colebrook–
White equation (Coban 2012; Turgut et al. 2014). This equation that 
represents friction factor as a dependent of Reynolds number and 
relative roughness, is an implicit-form equation that need an iterative 
procedure to be determined.  

The main purpose of this study is to present hydraulic engineers 
with a practical application of Mathematica in hydraulic engineering, for 
accurate determination of friction losses in both series and parallel 
pipeline systems. To this purpose, the simple and very accurate Regula 
Falsi iterative numerical scheme within the Mathematica programming 
tool (Bahder 1994) was used to solve the implicit nonlinear equation of 
friction factor. Regardless of the complexity of pipeline system, all 
related problems can be solved over a desired length of a pipe using 
the energy-equation, as described in following section. The main 
contribution of this work is preserving the accuracy of estimates while 
reducing the computational burden. This study uses simple and efficient 
method of Regula Falsi to solve a set of parallel and series pipelines 
systems problems. Furthermore, the Mathematica procedures 
discussed here indicate several features of Mathematica and illustrate 
how these features may be used to solve all different pipe flow 
problems. The next purpose of this work was to present a new paradigm 
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for engineering computations and education by arithmetic systems 
such as Mathematica. 

 
2. Materials and methods 
2.1. Governing equations 
 

The continuity principle for an incompressible fluid which steadily 
flows in a pipe is presented as equation1 (Larock et al. 2000). 

 
A

Q vdA AV  (1) 

where, Q is flow discharge, V is mean velocity and A is pipe cross-
sectional area. The next basic principle is the energy equation. 
Considering Fig. 1, the energy equation can be written for steady one-
dimensional flow as equation 2. 

where, V2/2g, P/ γ and Z are velocity, pressure and elevation head, 

respectively.  Lh  is the head losses between a and b, and mh  is 

the energy head by hydraulic machinery.  

 
Fig. 1. Pipeline system schematic; (a) Series pipeline system for 

example 1; (b) Parallel pipeline system. 

The Darcy–Weisbach equation and the Colebrook–White formula 
are the most accurate relations for calculating the major head losses 
(Larock et al. 2000). The Darcy–Weisbach equation can be 
demonstrated as equation 3. 

2

2
f

L V
h f

D g

 (3) 

or 
2

2 4

8
f

L Q
h f

D g D

     (4) 

in which, f, L, D, V and g denote the: Darcy–Weisbach friction factor, 
pipe length, pipe diameter, mean velocity, and gravity acceleration, 
respectively. For turbulent flow condition, friction factor can be 
calculated by the implicit Colebrook–White semi-theoretical formula 
(Larock et al. 2000). 
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where, e is the equivalent roughness, 4 / ( )eR Q D    is the 

Reynolds number,   is the fluid density, and   is the dynamic 

viscosity. If  eR , equation 5 becomes: 
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where, fT is fully rough friction factor. For laminar flow, 64 / ef R  

(Streeter et al. 1998). The minor losses are usually obtained as a 
multiple of an entrance loss, or an equivalent lengths of pipe (Hodge 
and Taylor 1999). References (Shames 1982; Hodge and Taylor 1999; 
Larock et al. 2000) are valid sources for determining the minor loss 
coefficients (K). The friction factor and K are used in the following 
sections as series and parallel pipeline systems for which examples are 
presented and discussed. Mathematica solutions for both pipe systems 
are considered in detail in the following sections. 
 
2.2. The Regula Falsi iterative scheme 
 

The Regula Falsi method is an iterative algorithm, a subset of the 
bracketing methods, for finding roots of equations. Regula Falsi always 
converges and has versions that do well at avoiding slowdowns, so it 
is a good choice when speed is needed. Here, a brief introduction to 
this algorithm is presented (Conte, 1980). A function f(x) on floating 

number x and two numbers ‘a’ and ‘b’ exists so that f(a)*f(b) < 0 and f(x) 
is continuous in [a, b]. Suppose that in the k-th iteration the bracketing 
interval is (ak, bk). As illustrated, a line through the points (ak, f (ak)) and 
(bk, f (bk)) is constructed. The root is being approximated by replacing 
the actual function by a line segment on the bracketing interval. 

 

Fig. 2. Representation of Regula Falsi method. 
 

This line is a secant or chord of the graph of the function f. In point-
slope form, its equation is given by: 

k k
k k

k k

f b f a
y f b x b

b a

( ) ( )
( ) ( )


  


  (7) 

Now choose ck to be the x-intercept of this line, that is, the value of 
x for which y=0, and substitute these values to obtain: 
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Solving this equation for ck gives: 
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 (9) 

As a solution is approached, ak and bk will be very close together, 
and nearly always of the same sign. Such a subtraction can lose 
significant digits. Because f(ak) and f(bk) are always of opposite sign, 
the subtraction in the numerator of the improved formula is effectively 
an addition as is the subtraction in the denominator too. At iteration 
number k, the number ck is calculated as above and then, if f(ak) and 
f(ck) have the same sign, set ak+1=ck and bk+1=bk, otherwise set ak+1=ak 
and bk+1=ck. This process is repeated until the root is approximated 
sufficiently well. Though Regula Falsi always converges, there may be 
some situations that can slow its convergence like all of the numerical 
equation-solving methods. To solve this problem, a number of 
improvements to Regula Falsi have been proposed like the Illinois 
algorithm and the Anderson−Björk algorithm, among others (Ford 1995; 
Galdino. 2011). 

 
2.3. Series pipeline system 
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Series layout for pipeline systems means that each pipe elements 
(pipe segments, valves, pumps, turbines, etc.) arranged in series. In 
this layout, the flow rate is identical in all elements. Fig. 1a illustrates 
such a system. The energy equation (equation 2) for this system 
becomes: 

2 2 2
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(10) 

where, Pa, Pb and Va, Vb are the pressure and velocity at section a and 
b, respectively, Za and Zb are the elevation at point a and b, respectively, 
M is the number of each pipe, Di is the diameter, Li is the length, fi is 
the Darcy–Weisbach friction factor, Ki is the minor loss coefficient, CifTi 
is the minor loss coefficient for pipe i. 

Three different types of problem exist in series pipeline systems: in 
category I, hp is the unknown; in category II, Q is unknown; and in 
category III pipe diameter should be obtained. The way of solution for 
category I problems is direct, while for Category II and III is iterative. 
The same Mathematica scheme can be applied for solving all 
categories of series pipeline problems. Example (1) indicates several 
capabilities of proposed Mathematica procedure in solving of the series 
pipeline problem. 

 
Example 1: Problem description: Water with 20 0C temperature, flows 
from a reservoir through a series pipeline system as demonstrated in 
Fig. 1a. Pipe material is wrought iron. For this system: 
(1) Determine Q if the turbine doesn’t exist in the system; 
(2) Determine the extracted power by turbine if Q=0.00453 m3/sec; 
(3) Determine Q if 2 hp ia extracted by the turbine; 
(4) Determine the relationship between Q and power extracted for this 
system. 

 
2.4. Parallel pipeline system 
 

In parallel pipeline systems, the role of energy loss and flow 
discharge are reversed from their roles in series systems. In series 
pipes, the flow rate is identical in all pipes while the energy losses are 
additive. But for a parallel pipes system, the energy losses between two 
given junctions is identical for each pipe while the total flow rate equals 
to sum of the individual discharges. Parallel pipeline systems, as 
demonstrated in Fig. 1b, have long been solved by iterative methods as 
explained here. The mass conservation principle for the parallel pipeline 
system at Fig. 1b can be stated as: 

1 2 3   TQ Q Q Q  (11) 

If the pump in Fig. 1b increases the flow head to make Pa=Pb, then the 
energy equations can be written as follow (Hodge and Taylor. 2002). 
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Equations 11 and 12 show the system of equations which will be utilized 
in the Mathematica program to solve problems of parallel pipeline 
systems. The needed information for the program will be prepared 
similar to that expressed for series pipeline problems. The two prevalent 
parallel pipeline problem types are known hm, find QT, Q1, Q2, and Q3, or 
known QT, find hm, Q1, Q2, and Q3. Although the first type of problems 
can be placed in Category I, the solution technique presented herein 
makes use of the Mathematica program for all types of parallel pipeline 
systems. Example (2) is presented for a parallel pipeline system. 

 
Example 2 Problem description 
 

Fig. 1b displays a parallel pipeline system with three pipes. For this 

system, Za=Zb, 3701 / kg m and 20.00051 . / N s m . Table 1 presents 

details of each pipe (Hodge and Taylor. 2002). For this system: 
(1) Determine the increase in head and power imparted to the fluid for 

Q=0.036 m3/s; 
(2) Determine QT if the increase of pump head was 51 m; 

(3) Determine the power delivered to the fluid if a 10-kW booster pump 
was existed in line 3 and the QT were maintained at 0.036 m3/s. 

 
Table 1. Pipe Characteristics for Example 2. 

Pipe D, cm L , m e, mm K C 

1 5 60 0.1 0 60 
2 5 60 0.1 0 60 
3 4 55 1.0 1.5 60 

 
3. Results and discussion 
3.1. Example 1 solution 
 

The first step is to apply and reduce the energy equation for the 
system. 
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(13) 

where, hm is positive for a pump and negative for a turbine. For this 
system 
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From Hodge and Taylor (2002) and Shames (1982), values of the 

minor loss coefficients for the system of Example 1 are 0.5entK , 

30elbow TK f , exp 9K and 55gv TK f . So, the energy equation 

reduces to 
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(15) 

Equation15 will be used as the basis for solution for all parts of this 
problem. Of particular interests are the similarities of the Mathematica 
solution for each part and the general congruence of the solution of 
each part with the problem statement. 
Part (1): The flow rate if the turbine does not exist in the system. This is 
a problem from Category II, where the flow rate should be calculated 
for hm=0 (no turbine or pump). The Mathematica program for the 
solution is scripted as Fig. 2. For this part of the problem, the unknown 
is the flow rate, Q, but f1, f2 and f3 are function of Q, thus for calculation 
of friction factor we have an implicit equation, and requires either by an 
iterative numerical scheme or by utilizing the Moody diagram. However, 
these procedures are not simple.  

In the Mathematica program, the first part (a) determines the values 
of the variables, constants, physical properties and functional 
definitions for the fully rough friction factor. The second part (b) is the 
Regula Falsi iterative numerical scheme for solving the implicit 
nonlinear equation. The third part (c) is the main program. For a 
problem of Category, I or III, only the required solution variable (and an 
initial estimate) should be changed. For Part 1 of Example 1, the Q for 
system with no turbine (or pump) is 0.029m3/sec. 
Part (2): The extracted power by turbine if Q= 0.00453 m3/sec. This is 
a problem within Category I and can be directly calculated. Fig. 3 
presents that portion of the Mathematica program. The omitted part of 
the program in Fig. 3 is identical to the part (a) and (b) of the program 
in Fig. 2. The run of program provides the turbine decrease in head, 
22.21 m, from which the power extracted is computed to be 1.321 hp. 
The negative signs on the program run indicate a turbine and power 
extracted.  
Part (3): The flow rate if 2 hp were extracted by the turbine. Fig. 4 
represents the relevant part of the Mathematica program for this 
solution. As illustrated in Fig. (3), the omitted part of the program is 
similar to the parts (a) and (b) of Fig. (2). The first solution, with an initial 
flow rate estimate of 0.00453 m3/sec, yields a flow rate of 0.0246 m3/sec 
with a turbine head reduction of 6.19 m. As confirmation, the power is 
calculated to be the required 2 hp. However, a second solution of flow 
rate is 0.00714 m3/sec and a turbine head reduction of 21.33 m. For the 
second solution, the extracted power is again 2 hp. Hence, the solution 
is double valued in Q for a given power extracted. This behavior will be 
further investigated in Part 4. 
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(a) 

 
(b) 

 
(c) 

Fig. 2. The Mathematica program for Part 1 of Example 1; (a) constants and physical properties; (b) the Regula Falsi iterative numerical 
scheme; (c) the main program. 

 

  

Fig. 3. A portion of the Mathematica program for Part 2 of Example 1. Fig. 4. A section of the Mathematica program for Part 3 of Example 1. 

Part (4): The relationship between Q and extracted power  
Considering the system operation, Parts 1, 2, and 3 clearly show a clear 
relationship between Q and the power extracted. Without power 
extraction, the flow rate will be maximum, as presented in Part 1. 
Indeed, Part 1 is characterized by the maximum flow rate and a turbine 
head reduction equal to zero. If the turbine extracts all available flow 
head, both the Q and the extracted power would be zero. In Parts 2 and 
3, different Qs and turbine head reduction lead to different power 
extractions. Indeed, in Part 3, two different Qs were found to generate 
2 hp from the turbine. For the system, a more negative number of 

turbine head reduction leads to a smaller Q, but the power contains the 
product of Q and head reduction. Therefore, a relative maximum or 
minimum is demonstrated. The Mathematica computations for 
extracted power are presented in Fig. 5 as a function of flow rate. As 
shown in previous Figs., the omitted part of the program is as the part 
(a) and (b) of Fig. 2. The power is then computed for each Q, and the 
results are illustrated graphically in Fig. 6. The maximum power value 
(about 3.29 hp) which extracted from the system occurs at Q= 0.0166 
m3/sec. Fig. (6) demonstrates the double-valued, in-power extraction 
nature of the system operation. The series pipeline examples 
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demonstrate Mathematica solutions for the prevalent types of series 
pipeline problems. Somewhat parallel piping systems are more complex 
than series pipeline systems, as are examined in the next section. 
 

 

Fig. 5. A portion of the Mathematica program for Part 4 of 
Example 1. 

 

 

Fig. 6. The relationship between Q and power extracted for turbine 
 

3.2. Example 2 solution 

Part 1. The head increase and power imparted to the fluid for Qt = 0.036 
m3/sec. Like example 1, the Similar Mathematica formulation will be 
used for all three parts of example 2; only the number of equations and 
variables will be changed. Fig. 7 contains the complete Mathematica 
program for the solution of Part 1. 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The Mathematica program for Part 1 of Example 2. (a) Constants and physical properties, (b) The Regula Falsi iterative numerical 
scheme, (c) The main program. 
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This program is the kernel for the solutions to all parts of this 
problem. The first part of program (part a) defines the values of the 
variables, constants, physical properties, and functional definitions for 
the fully rough friction factor. The second part (b) is the Regula Falsi 
iterative numerical scheme for solve the implicit nonlinear equation. The 
third part (c) is the main program.  
Each variable should be specified either with values or given 
estimations. The unknowns for this part of problem include Q in each 
legs and the required head increment. For other types of parallel 
pipeline systems, just the required solution variables (and the initial 
estimates) should be changed. Similar to series pipeline problems, the 
algorithm of solution is less important compared to the problem 
formulation and results interpretation. For Part 1 of Example 2, Q is 
0.0149, 0.0152, and 0.0059 m3/sec, respectively, for pipes 1, 2 and 3. 
The head increment of pump is 87.5 m, and the power delivered to the 
fluid is 21.7 kW. 
Part 2. The Qt if the increase in head were 51 m.  
Fig. 8 displays a section of the Mathematica program showing the main 
program for the solution. Only the main program is presented in the 
Figure as the first and second parts of the program (part a, b) for part 2 
are identical to that of part 1. For Part 2, hp=51m is given and Qt, Q1, 
Q2, Q3 and power of pump are the unknowns. For this part of Example 
2, Qt is 0.0274 m3/sec, and the Q1, Q2 and Q3 are 0.0113, 0.0116, and 
0.0045 m3/sec, respectively. The delivered power to the fluid is 9.62 
kW.  

  

Fig. 8. A portion of the Mathematica program for Part 2 of Example 2. 

 

 

Fig. 9. A portion of the Mathematica program for Part 3 of Example 2.  

Part 3. The delivered power to the fluid if a 10kW booster pump existed 
in line 3 and Qt was maintained at 0.036 m3/sec. This is like Part 1, 
except that a 10kW booster pump exists in line 3. The Mathematica 
program for this part of the problem is demonstrated in Fig. 9. One 

equation should be added to solve block, 
310  pkW Q h , that represents 

the delivered power to the fluid in line 3 and by the addition to the leg 3 
energy equation of -hp, the developed head by the pump located at leg 
3. For Part 3 of Example 2, the Q1, Q2 and Q3 are 0.0131, 0.0135, and 
0.0094 m3/sec, respectively. The head of main pump is 68.45 m, and 
the delivered power to the fluid is 16.9kW. The power delivered by 
booster pump to the fluid in leg 3 is confirmed to be 10 kW or 154.38 m 
in head. This is a relatively hard problem to solve ‘‘by hand’’ but the 
Mathematica solution is simple, straight forward, and congruent with the 
problem formulation. 

4. Conclusions 
 

Computation of friction factor in Darcy-Weisbach equation is one of 
the main steps in solving pipe flow problem. Since it depends on relative 
roughness and Reynolds number, an iteration process is needed for 
estimation of friction factor. In this study, a theoretical solution of implicit 
equation in pipeline systems was presented using Mathematica 
software. The results showed that using Mathematica, the problems can 
be more involved, open-ended and integrated. The Mathematica 
procedures discussed here indicate several features of Mathematica 
and illustrate how these features may be used to solve all different pipe 
flow problems. The Mathematica procedures are more compliant with 
the problem formulation compared to the traditional procedures. The 
concrete result is that the use of Mathematica permits researchers to 
focus on engineering rather than computational aspects of problem 
solutions. It was found that arithmetic systems such as Mathematica, 
present a new paradigm for engineering computations and education. 
Using this new paradigm, not only the existing techniques will not be 
replaced but also another option for computations is offered, that is, 
engineering tasks become the focus instead of programming tasks. The 
examples presented in this paper indicate the potency of Mathematica 
in a variety of pipeline systems calculations of pedagogical interest. One 
of the main limitation of this study was that the real data on series and 
parallel pipe line systems are scarce. That’s why the researchers only 
use benchmark problems for assessing their proposed models. 

 
Nomenclature 

 

A Cross-sectional area of flow 
C Equivalent pipe lengths for minor energy losses 
D Diameter of pipe 
E Equivalent roughness 
F Darcy–weisbach friction factor 
fT Fully rough friction factor 
G Gravity acceleration 
hf Major head loss 
hL Total energy loss per unit weight 
Hm Mechanical energy per unit weight 
Hp Pump head 
Ht Turbine head l 
K The number indicating minor loss Coefficient 
L Length of pipe 
M Number of pipes 
P Pressure 
Q Discharge 
Re Reynolds number 
V Velocity distribution 
V Average velocity of flow 
Z Elevation head 

  Specific weight 

  Density 

  Dynamic viscosity 
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