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 Generally, Hydraulic jumps usually happen at the downstream of hydraulic 
structures like ogee spillways. In addition, one of the parameters affecting the 
proper design of stilling basin is calculation of the hydraulic jump length. In this 
study, a hybrid method (ANFIS-DE) was proposed for modeling hydraulic jumps on 
sloping rough beds for first time. This approach forecasts values of the jump length 
by combining the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the 
Differential Evolution (DE) algorithm. First, the variables affecting the hydraulic 
jump length including the ratio of bed roughness, the Froude number, the ratio of 
sequent depths and the bed slope were identified. Then, by combining the input 
parameters, five different numerical models were introduced. Furthermore, the k-
fold cross validation (k=4) was utilized so as to verifying the numerical models. The 
results of the analysis of different numerical models indicated that the model with 
four input parameters (superior model) simulated the length of the hydraulic jump 
with higher accuracy. For the best model, the mean absolute percent error (MAPE), 
the correlation coefficient (R) and the root mean square error (RMSE) were 
predicted 4.875, 0.978 and 0.807, respectively. Finally, two parameters including 
the ratio of sequent depths and the Froude number were identified as the most 
important parameters in modeling the hydraulic jump length on sloping rough beds. 

©2019 Razi University-All rights reserved. 
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1. Introduction 
 

Hydraulic jumps occur after structures like ogee spillways in order 
to dissipate the flow energy. To prevent an ogee spillway downstream 
from flooding and erosion, stilling basin are usually installed. Prediction 
of hydraulic jump characteristics is very important for determining 
dimensions of stilling basin. There are various studies carried out on 
the hydraulic jump due to its importance. For example, Hager (1985) 
experimentally examined the behavior of the hydraulic jump inside a 
horizontal and non-prismatic rectangular channel. In addition, Hager et 
al. (1990) suggested a relationship predicting the roller length as the 
Froude number was range between 2.5 to 8. The relationship predicted 
the roller length as a function of the Froude number at the hydraulic 
jump upstream. Ead and Rajaratnam (2002) conducted an 
experimental investigation on hydraulic jumps on labyrinth beds. In their 
experimental model, the range of the Froude number at the hydraulic 
jump upstream was between 4 and 10. They studied the features of the 
hydraulic jump in three relative roughness conditions including 0.25, 
0.43 and 0.5 and showed that the shear stress on rough beds are three 
times greater than smooth beds. Additionally, Carollo et al. (2007) by 
conducting an experimental work, examined the features of the 
hydraulic jump on rough and smooth beds. They proposed an equation 
in terms of the Froude number and relative roughness for calculating 
the roller length. Also, Pagliara et al. (2008) experimentally examined 
the hydraulic jumps in rectangular channels located on non-
homogeneous and homogeneous rough beds and provided a number 
of relationships for calculating the roller length. Their relationships 
predicted the roller length as a function of the Froude number and bed 
roughness. Furthermore, Carollo et al. (2009) developed an analytical 
approach for computing hydraulic jumps. They proposed some 
relationships for calculating sequent depths of the jump on rough and 

smooth beds. Moreover, Carollo et al. (2013) surveyed the sequent 
depths of B-jump hydraulic jumps for both rough and smooth beds in 
sloping flumes. Also, Ahmed et al. (2014) examined the effect of rough 
beds on the characteristics of jumps. They proposed a relationship in 
terms of the Froude number to predict the roller length of hydraulic 
jumps. Velioglu et al. (2015) examined the hydraulic jumps on rough 
beds. They showed that bed roughness causes to reduce the tailwater 
of the hydraulic jump. In recent years, soft computing has been 
significantly employed in predicting various engineering phenomena 
(Naderpour et al. (2018), Naderpour and Alavi (2017)). Furthermore, 
soft computing techniques have been used for modeling the 
characteristics of hydraulic jumps. For example, Omid et al. (2005) 
modeled the jumps in rectangular flumes by implementing the artificial 
neural network (ANN). They proved that the mentioned algorithm 
predicts the sequent depths and the hydraulic jump length with 
reasonable accuracy. Naseri and Othman (2012) simulated the 
hydraulic jump length in rectangular channels using ANN for Froude 
numbers between 1.7 and 19.5. It was indicated that the numerical 
model had a suitable accuracy so that the determination coefficient for 
the model was 0.9962. Using the Gene Expression Programming 
(GEP), ANN and the Support Vector Regression (SVR) models, Karbasi 
and Azamathulla (2016) approximated the roller length and the sequent 
depths of hydraulic jumps on rough beds. They proved that the GEP 
model predicts the hydraulic jump with higher accuracy. Additionally, 
Azimi et al. (2018a) simulated the roller length of jumps on rough beds 
by employing the group method of data handling model. 

As seen, numerous studies have been carried out on the hydraulic 
jump on rough floors because calculation of hydraulic jump length is 
quite important for designing stilling basins. However, modeling of the 
jump length on sloping rough beds using soft computing methods 
requires further investigations. Moreover, novel artificial intelligence 
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techniques such as hybrid or meta-heuristic approaches should be 
applied to simulate this phenomenon. In this study, the length of 
hydraulic jumps on rough sloping beds is modeled by combining the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Differential 
Evolution (DE) algorithm using MATLAB software for the first time. In 
other words, the ANFIS network is optimized by employing DE 
algorithm. Firstly, the influence of various parameters on the length of 
jumps on sloping rough beds flumes is evaluated. Finally, the best 
model and the parameters affecting the length of the hydraulic jump are 
introduced.  

 
2.  Materials and methods 
2.1. Adaptive Neuro-fuzzy inference systems (ANFIS) 
 

The ANFIS is a hybrid approach based on soft computing techniques 
combining the advantages of the ANN method the fuzzy logic 
characteristics as parallel processing. The processing of this method has 
high convergence speed and high accuracy. In the current study, the 
approach introduced by Jang et al. (1997) is employed for modeling the 
hydraulic jump length taking place on sloping rough floor using ANFIS. 
This model has a similar approach with the first order Sugeno fuzzy 
model. A sample from this process is considered for a fuzzy inference 
system (FIS) and an output (f). To define this problem, according to the 
interested problem of this study, for one model of models provide for 
modeling the hydraulic jump length on rough floor the parameters x and 
y can be considered as the Froude number (Fr) and the sequent depths 
(h2/h1). Also, the output f in this study represents the function Lj/h1. This 
example is evaluated for two input parameters of this study. A sample set 
rules can be expressed by two if-then rules for a first order Takagi-Sugeno 
fuzzy model as follows: 

111111 ryqxpfThenBy,AxIF:1Rule ++===                        (1) 

222122 ryqxpfThenBy,AxIF:1Rule ++===             (2) 

The antecedent section has the fuzzy nature and the consequent 
section (if and then, respectively) is a fragile function from the antecedent 
part as a linear relationship or a rule. If the modeling input parameters 
Lj/h1 are considered only as two parameters including Fr and h2/h1, 
relationships 1 and 2 are rewritten as follows: 
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where, the parameters pi, qi and ri (i=1, 2, 3… n) are parameter set related 
to different rules (Rule 1… Rule n). The schematic layout of ANFIS with 
two inputs and the structure of the ANFIS used in this study with four input 
parameters are illustrated in Figure 1. The performance of different layers 
in this picture is as follows: 
First Layer: each node in this layer creates membership degrees related 
to an input variable. 

 ,21=i)Fr(O
iA

1
i μ=                               (5) 

where, Fr is the ith input and Ai is the linguistic label for this node. Also, 
for h2/h1 (second input parameter) another function is considered as 
follows: 

 ,43=i)h/h(O 12B
1
i 2i

= μ                   (6) 

In Equation 5, Oi
1 is considered as the membership function of Ai and 

specifies the degree that given input (Fr) meets for the quantity Ai. The 
membership function used in this study is a bell-shaped function which 
has had a good performance in recent studies and is defined as follows: 
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Here, {ai, bi, ci} is the parameters set and μ is the membership function 
related to Ai. Change in each parameter leads to providing different 
membership functions. The parameters of this layer are introduced as the 
prismatic parameters. For each model input in this study, three 
membership functions are considered.  
Second layer: This layer includes specific circular nodes denote by П 
multiplying input signals by each other as the following equation and 
sends for the production output. 

2,1i,h/hBFrAwO 12iii
2
i =)()(==                 (8) 

Each output node represents the firing strength of the defined rule. 
Third layer: In this layer, N circular nodes compute the ratio of the firing 
strength of the ith rule to the sum of all firing strengths of rules as follows: 
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The output of this layer is provided as the normalized firing strength.  
Fourth layer: in this layer, values of p, q and r are optimized. In fact, all 
nodes in this layer are adapted by a node function as follows: 

)r)h/h(qFp(wO i12i1ii
4
i ++=                             (10) 

Where, {pi, qi, ri} are the parameters set and  is the output of this layer. 
Parameters of this layer are known as the antecedent parameters.  
Fifth layer: The single circular node in this layer (∑) calculates all outputs 
as the sum of ll input signals as follows (Jang et al., [15]): 

∑
∑
∑

==

i

ii

ii
5
i

w

fw

fwO                                (11) 

Learning of ANFIS is done using two algorithms including back 
propagation and the hybrid algorithm (combination of back propagation 
and least square). In the first algorithm, the back propagation is utilized 
for all data, but in the hybrid algorithm, the back propagation is used for 
input data (prismatic data) and the least square is used for outputs 
(antecedent parameters). Considering that the hybrid algorithm is more 
accurate than the back propagation, in this study the hybrid algorithm is 
implemented for simulating the hydraulic jump length on sloping rough 
floor. In addition, in order to use these two algorithms, in recent years, the 
application of differential evolution algorithms for optimizing values of 
membership functions have led to enhance prediction results by ANFIS 
(Shoorehdeli (2009), Chang (2011) and Chen (2013)). Hence, in this 
study, the differential evolution (DE) algorithm is used for learning ANFIS 
and the results are compared with the ANFIS-DE. 
 

 

Fig. 1. ANFIS structure used in this study as quaternary and general.  

 
2.2. Differential evolution algorithm (DE) 
 

The DE algorithm is a powerful evolutionary approach in global 
optimization provided for the first time by Storn and Price (1997). Due to 
the good convergence of this algorithm and its easy understanding, it has 
many applications in different practical cases (Liu and Lampinen (2002)). 
If the desired objective function that must be optimized is called f, so: 

RR:)V(f D →                                 (12) 

Here, R indicates real datum and D represents the number of the target 
function f(V). The purpose of the use of the DE algorithm is minimizing 
the objective function value through optimization of parameters values: 

D
D1 RV),v,...,v(V ∈=                             (13) 
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Here, V is a vector containing the target function parameters. In this 
paper, the target function is as the mean square error between estimated 
and real values. Parameters of the objective function are defined on the 
following domain: 

)U(
ii

)L(
i vvv ≤≤                              (14) 

where, vi
(L) and vi

(U) are the lower and upper bounds, respectively.  
As other evolutionary algorithms, DE also acts on populations of the 
response candidate, PG, to achieve an optimal response. If we consider 
G as a generation of the population, the population examined by DE can 
be expressed as follows: 

maxG,NPG,2G,1G G,...,0G)V,...,v,v(P ==                                          (15) 

Each vector contains D real parameter considered as unique 
chromosomes. 

maxG,i,DG,i,2G,i,1G,i G,...,0GNP,...,2,1i)V,...,v,v(v ===          (16) 

In order to create a start point for optimal search, the initial population 
must be created. Generally, there is no information about the situation of 
the optimal response but the problem parameters. Thus, one of the ways 
for determining the initial population, PG=0, is the random selection 
among existing limitations as follows: 

D,...,2,1j,Np,...,2,1iv)vv](1,0[randv )L(
j

)L(
j

)U(
jj0,i,j ==+= (17) 

Here, randj [0, 1] is the random value of the uniform distribution on the 
domain [0,1] selected for each new j. The re-production procedure of DE 
is different from other evolutionary algorithms. From the initial production 
towards common population vectors, PG is randomly sampled and 
combined to generate candidate vectors for the next generation (PG+1).  
The candidate population or obtained vectors are calculated through 
several trials as follows: 

 

 

          
(18)  

 

r1, r2 and r3 are different variables which their values vary from one run 
to another. In addition, i is a parameter that its value must be 
determined. Thus, correct values of the parameters r1, r2 and r3 are 
randomly chosen for each i value. Selection in DE algorithm is different 
from other evolutionary algorithms, so that the population for the next 
generation (PG+1) is selected from the existing population (PG) and the 
offspring population follows the following formula: 

 

(19) 

                         
So, each unique member of the temporary population is compared with 
its counterparts in the existing population. Assuming that the objective 
function is maximized, the vector with the least value of the objective 
function obtains a new location in the next generated population. 
Therefore, all unique people of the next population are good or better 
than their counterparts in the existing population. 
 
2.3. Hybrid method 
 

In this sub-section, the proposed hybrid method of ANFIS with 
differential evolution (DE) as a global optimization algorithm is 
presented (ANFIS-DE). The DE algorithm is employed to optimize the 
adjustable network parameters which are has the significant effect on 
to gain an optimize results. The introduced ANFIS-DE is encoded in 
MATLAB software. Firstly, a primary ANFIS model is generated for the 
hydraulic jump length data using the training dataset. The tuned values 
for antecedents and consequents parameters of the ANFIS model 

produced by training data are not optimized. Then, the DE algorithm is 
applied to optimize the antecedent and consequent parameters of the 
model. Before start the training stage, some features should be defied 
to solve the desired problems. One of the most important of these 
features is the method of the fuzzy inference system (FIS) generation. 
Due to the good performance of grid partitioning (GP) in literature 
studies, the GP technique is employed in this study. Another parameter 
that has a high effect to attain an optimum model is membership 
function (MF) type. In this study, Gaussian, triangular and bell shape 
MFs are used and fins the bell shape as the optimum one. After defining 
the MF type, the number of MF is defined to find an accurate and simple 
model simultaneously. Through a trial and error process, the number of 
three is obtained as the best value for number of the MFs. Moreover, 
the number of the population used in this study is 50, the mutation 
constant is 0.2, the crossover constant is 0.85 and the data domain is 
[-10 10]. The learning process of the network continues until reaching 
to the convergence criterion determined as the number of iterations or 
reaching to the objective function value. The selection process done by 
the DE algorithm is as follows: 
First, in order to avoid evolutionary iteration, constraints values and the 
objective function for the parameter Vi,G are stored in variables. Then, 
the value of Ui,G+1 which violates more constraints values than the value 
of Vi,G is rejected without re-evaluation. If the value of Vi,G satisfies all 
constraints, the trial Ui,G+1 is also conducted, because values of 
constraints are still less than the value of Vi,G. In the situation where 
values of Ui,G+1  and Vi,G are searched, the value of the objective function 
must be evaluated for the new trial (UG+1). It continues until the value of 
Ui,G+1 will be more than Vi,G. In this situation, the value of the 
membership function is not re-evaluated. 
The minimum defined error and the maximum number of iterations is 
considered as stopping criteria so if one of these criteria is satisfied, the 
training process of the ANFIS-DE model is finished. In this paper, the 
root mean square error (RMSE) is defined as the objective function 
such that the lower value of it results to better performance of the 
trained model. The values of the antecedent and consequent 
parameters at termination time are considered as the optimum ones. 
After finding the optimum values of the parameters of the ANFIS-DE 
model (i.e. antecedent and consequent parameter), this model could be 
employed to model the hydraulic jump length which are not existed in 
the training phase. In Figure 2, the flowchart of the proposed hybrid 
method for simulating the hydraulic jump length on the sloping rough 
bed is illustrated. 

 
Fig. 2. Flowchart of ANFIS-DE algorithm.  

 
2.4. Experimental model 
 

In the current study, in order to validate the numerical models, the 
Kumar and Lodhi’s (2016) experimental model is utilized. Their 
experimental model contains a sloping rectangular channel with the 
length of 8m, the width and the height of 0.6m. The experimental values 
for three slopes were measured 0.000463, 0.00986 and 0.01552. In the 
mentioned experimental model, stone materials with the average 

diameter  of 0.00398m, 0.0056 m, 0.007m and 0.011m were 

used for creating a rough bed. In Kumar and Lodhi (2016) experimental 
model, the parameters Q, S0, Ks, h1, h2 and Lj are discharge, bed slope, 
height of bed roughness, flow depth at upstream of the hydraulic jump, 
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flow depth at downstream of the hydraulic jump and the hydraulic jump, 
respectively. In Table 1, the range of experimental values is listed. In 
addition, the layout of Kumar and Lodhi (2016) experimental model is 
illustrated in Figure 3.  
 

Table 1. Range of experimental values. 

Mean Minimum Maximum Parameter 

0.057 0.034 0.072 Q (m3s-1) 
2.572 1.398 5.258 F1 
0.009 0.0005 0.016 S0 (-) 
0.006 0.002 0.011 Ks (m) 
0.054 0.03 0.087 h1 (m) 
0.262 0.026 0.344 h2 (m) 
0.638 0.3 0.9 Lj (m) 

 

 

Fig. 3. Layout of experimental model of hydraulic jump on steep rough 
surface. 

 
2.5. Hydraulic jump Length on sloping rough bed 
 

Hager et al. (1990), Ead and Rajaratnam (2002) and Carollo et al. 
(2007) showed that the length of the hydraulic jump is a function of the 
Froude number (Fr) and the ratio of the bed roughness to the flow depth 
at the upstream of the jump (Ks/h1):  

 

(20) 

                           
In addition, Azimi et al. (2018a) and Azimi e al. (2018b) assumed the 
hydraulic jump length on rough beds as a function of the Froude number 
(Fr), the ratio of bed roughness to the flow depth at the jump upstream 
(Ks/h1) and the sequent depths (h2/h1): 

 

(21) 

                           
Furthermore, Kumar and Lodhi (2016) considered the influence of the 
channel slope (S0) in their experimental study. Thus, in this study, the 
effects of Fr, Ks/h1, h2/h1 and the channel bed slope (S0) on the 
hydraulic jump length are considered. Therefore, equation (21) is 
written as follows: 

 

(22) 

                           
Thus, for simulating the hydraulic jump length using the ANFIS-DE 

model, the effects of Fr, Ks/h1, h2/h1 and S0 are considered. In this study, 
for examining the effectiveness of each of the input parameters, five 
different numerical models are defined as figure 4. It should be noted 
that for calibrating the performance of the ANFIS-DE models, the Monte 
Carlo simulations (MCs) are applied. In addition, the k-fold cross 
validation approach (k=4) is utilized for validating the simulation results. 
The number of data is 88. Regarding with k=4, 25% of the data are used 
for testing and 75% for training in each validation. The schematic of the 
k-fold cross validation method is illustrated in figure 5. 

 
3. Results and discussion 
3.1. Criteria for examining accuracy of numerical model 
 

In the current study, the statistical indices including mean absolute 
percent error (MAPE), root mean square error (RMSE), Scatter Index 

(SI), BIAS and the correlation coefficient (R) are utilized for examining 
the accuracy of the numerical models as follows: 

 

 

       
(23) 

 

 

 

(24) 

          

 

(25) 
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(27)  

 

In equations (23) to (27), ( )( )iObserved1hLj , ( )( )iedictedPr1hLj ,

( )( )iObserved1hLj  and n the measured hydraulic jump length, the 

predicted hydraulic jump length, the average of experimental jump 
lengths and the number of experimental measurements.  
 

 

Fig. 4. Combinations of Froude number (F1), ratio of bed roughness 
(Ks/h1), sequent depths (h2/h1) and bed slope (S0) parameters in 

different models of ANFIS-DE.  
 

 

Fig. 5. Dealing of k-fold validation method with experimental values. 
 

3.2. Sensitivity analysis 
 

To study the parameters affecting jumps on sloping rough floors, 
five various models are developed in this study. The ANFIS-DE (1) 
model predicts values of the hydraulic jumps using a combination of all 
input parameters. Furthermore, four models including ANFIS-DE (2) to 
ANFIS-DE (5) simulate the length of the hydraulic jump by combining 
three input parameters. In other words, in order to identify the effective 
parameter, the influence of each of the input parameters on these four 
models has been eliminated. In figure 5, the scatter plots are shown for 
different models. Based on the results of the numerical modeling, the 
values of mean absolute percent error and root mean square error for 
the ANFIS-DE (1) model are calculated 4.875 and 0.807, respectively. 
In addition, the R for this model is 0.978. This model predicts values of 
the length of the hydraulic jump in terms of the Fr, the Ks/h1, the sequent 
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depths (h2/h1) and bed slope (S0). Whereas, the value of SI for ANFIS-
DE (1) is 0.064 and the value of BIAS for this model is also estimated 
2.1*10-06. According to the analysis of the modeling results, among all 
models, ANFIS-DE (1) has highest accuracy in modeling the hydraulic 
jump length. For simulating the hydraulic jump length using ANFIS-DE 
(2), the influence of the sequent depths is neglected. In other words, 
the model simulates the hydraulic jump length in terms of three input 
parameters including the Fr, Ks/h1 and S0. For the model, the values of 
RMSE, MAPE and BIAS are obtained 1.388, 8,741 and -5.4*10-06. In 
addition, the correlation coefficient for the ANFIS-DE (2) is calculated 
0.932. Among the models with three input parameters, the ANFIS-DE 
(2) model has the lowest accuracy. The SI for the ANFIS-DE (3) is 
calculated 0.089. The ANFIS-DE (3) model simulates the target function 
by employing the Froude number, the sequent depths and bed slope. 
For this model, the influence of the ratio of bed roughness is removed. 
However, the R and RMSE for the model are calculated 0.957 and 
1.119, respectively. Among the models with three input parameters, the 
ANFIS-DE (3) has the highest accuracy in modeling the Lj/h1. It should 
be noted that the value of BIAS is obtained equal to 9.3*10-07. The 
ANFIS-DE (4) model simulates the Lj/h1 as a function of the Froude 

number, the ratio of bed roughness and the sequent depths. For this 
model, the influence of the bed slope is neglected. The values of the 
correlation coefficient, MAPE and RMSE for the ANFIS-DE (4) models 
are calculated 0.951, 6.858 and 1.187, respectively. In addition, for the 
model, the values of SI and BIAS are computed 0.095 and -2.3*10-05, 
respectively. After ANFIS-DE (3), the ANFIS-DE (4) has the highest 
accuracy among the models with three input parameters. For the 
ANFIS-DE (5) model, the values of RMSE, MAPE and R are calculated 
1.367, 8.929 and 0.034, respectively. Also, the SI and BIAS for this 
model are 0.109 and 9.2*10-07, respectively. For the model, the 
influence of the Fr is eliminated and the mentioned model simulates the 
Lj/h1 in terms of the ratio of bed roughness (Ks/h1), the sequent depths 
(h2/h1) and bed slope (S0). According to the modeling results, after the 
ANFIS-DE (2) model, the ANFIS-DE (5) model has the maximum error. 
Based on the analysis of the numerical modeling results, the ANFIS-DE 
(1) is introduced as the superior model. Furthermore, the sequent 
depths (h2/h1) and the Froude number (Fr) are the most important input 
in modeling the Lj/h1on sloping rough beds. 

 

 
 

 
 

 

Fig. 6. Scatter plots for models: (a) ANFIS-DE; (b) ANFIS-DE; (c) ANFIS-DE; (d) ANFIS-DE; (e) ANFIS-DE. 
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Fig. 7. Changes graphs of δ parameter versus logarithm of ratio of 

hydraulic jump length for models: (a) ANFIS-DE; (b)- ANFIS-DE; (c) 
ANFIS-DE; (d) ANFIS-DE; (e) ANFIS-DE. 

 

Table 2. Values of ( )maxδ ,  min  and ( )aveδ  for different models of 

ANFIS-DE. 

 
   

ANFIS-DE (1) 1.255 0.848 1.005 
ANFIS-DE (2) 1.409 0.814 1.013 
ANFIS-DE (3) 1.292 0.804 1.008 
ANFIS-DE (4) 1.331 0.807 1.009 
ANFIS-DE (5) 1.415 0.776 1.013 

 
Additionally, error distribution for ANFIS-DE (1) to ANFIS-DE (5) is 

illustrated in figure 7. For instance, almost 67% of discharge coefficient 
simulated using ANFIS-DE (1) has an error less than 5%, whilst roughly 
one fifth of ANFIS-DE (1) results have error between 5% to 10%. 
However, about 16% of ANFIS-DE (1) results have an error more than 
10 percent. Also, approximately 40 per cent of results obtained using 
ANFIS-DE (2) has error less than 5%. For this model, approximately 
one-third of results has an error more than 10%. According to the error 
distribution, nearly a quarter of ANFIS-DE (3) results has error more 
than 10%. Furthermore, about half of discharge coefficient modeled 
using ANFIS-DE (4) has error less than 5%. Moreover, just 35% of 
results predicted using ANFIS-DE (5) has error more than 10%. Also, 
for error less than 5%, this figure is roughly 39%. 
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P
a

g
e

 | 1
3
 

 



 

Gerami Moghadam et al. / J. App. Res. Wat. Wast. 11(2019) 8-15  

 

 

Please cite this article as: R. Gerami Moghadam, B. Yaghoubi, M.A. Izadbakhsh, S. Shabanlou, Prediction of the hydraulic jump length on sloping rough beds 

using meta- heuristic neuro-fuzzy model and differential evolution algorithm, Journal of Applied Research in Water and Wastewater, 6 (1), 2019, 8-15.  
  

 

 

 
 

Fig. 8. Error distribution for ANFIS-DE (1) to ANFIS-DE (5). 

Next, results of the superior model (ANFIS-DE 1) are compared 
with ANFIS and ANFIS-Genetic Algorithms (ANFIS-GA) models (Fig. 

9). According the numerical models, the correlation coefficient and 
scatter index for the ANFIS model are 0.936 and 0.108, respectively. 
Additionally, the MAPE and RMSE for ANFIS-GA models are estimated 
7.306 and 1.196, respectively. Thus, as it can be obviously seen, the 
ANFIS-DE has better performance so as to simulate the roller length of 
the hydraulic jump on sloping rough beds. 

 

 

Fig. 9. Comparison of ANFIS-DE with ANFIS and ANFIS-GA models. 
 
4. Conclusions 
 

At the downstream of different structures such as gates, spillways 
and ogee spillways, hydraulic jumps are happened. In this study, a 
hybrid method was developed for simulating the hydraulic jumps length 
on sloping rough floors by combining the ANFIS and the Differential 
Evolution (DE) algorithm. First, using the input parameters, five different 
models were introduced for identifying the effective parameter in 
modeling the hydraulic jumps length. The hybrid models predicted the 
hydraulic jumps length with reasonable accuracy. Then, the results of 
the modeling were analyzed and a model with four input parameter 
including the Froude number, the ratio of bed roughness, the sequent 
depths and bed slope was introduced as the superior model. For this 
model, the SI and BIAS were calculated 0.064 and 2.1*10-06, 
respectively. In addition, the sequent depths and the Froude number 
were introduced as the effective parameters in modeling the length of 
the hydraulic jump. 
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