Research Paper
Golshan Moradi; Sirus Zinadini; Masoud Rahimi
Abstract
Fumarate-Alumoxane nanoparticles (Fum-ANPs) incorporated PES nanofiltration membrane was fabricated via phase inversion to achieve favorable performance as an antifouling nanofiltration membrane for dye removal. To investigate the effect of the Fum-ANPs on nanofiltration performance, pure water flux ...
Read More
Fumarate-Alumoxane nanoparticles (Fum-ANPs) incorporated PES nanofiltration membrane was fabricated via phase inversion to achieve favorable performance as an antifouling nanofiltration membrane for dye removal. To investigate the effect of the Fum-ANPs on nanofiltration performance, pure water flux and water contact angle measurements were carried out. FTIR spectra of the Fum-ANPs revealed that the carboxylate and hydroxyl functional groups were created on the surface of Fum-ANPs. The strong affinity of Fum-ANPs functionalities with water molecules made the membrane surface more hydrophilic. Hence, this membrane sample had a higher pure water flux than the bare one. Zeta potential data showed that the Fum-ANPs blended PES membrane was negatively charged at a pH value of 6, which is favorable for negatively charged solute rejection. For investigating the antifouling behavior of the membranes, powder milk solution (8 g/l) were analyzed using a dead-end filtration apparatus. The results obtained from fouling analysis clearly demonstrated that the introduction of Fum-ANPs in the membrane matrix ameliorated the antifouling behavior of the resulting membrane. To study the performance of the Fum-ANPs incorporated PES membrane rejection of Direct red 16 dye was tested. The Direct red 16 rejection with the Fum-ANPs blended PES membrane was 99% while it was 88.2% for the bare membrane sample
Review Paper
Golshan Moradi; Sirus Zinadini; Masoud Rahimi
Abstract
The research on membrane-based filtration technology for water treatment has expanded in recent years. Membrane fouling is a major challenge that decreases the permeability and decreases the lifetime and selectivity of the membrane. Recently, it was found that fouling mitigation and better control of ...
Read More
The research on membrane-based filtration technology for water treatment has expanded in recent years. Membrane fouling is a major challenge that decreases the permeability and decreases the lifetime and selectivity of the membrane. Recently, it was found that fouling mitigation and better control of membrane fouling can be attained under the application of the electric field. This paper provides an overview of the application of the electric field to the filtration process and its antifouling mechanism. Utilization of conductive polymeric membranes and application of electric field in membrane bioreactors are reviewed as well. The presented review demonstrates that the introduction of negative charge into the membrane surface via preparing conductive membranes or applying an external electric field onto the membrane surface suggests several advantages. These are fouling alleviation, better control of membrane fouling, an increase of membrane resistance to cake deposition on the membrane surface, and superior possible applications such as better salt rejection and antibacterial activity.